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Abstract

In this thesis we investigate the recently introduced compressed commuting graph Λ1(R)
of a unital ring R. This is a graph whose vertices are equivalence classes of elements of R
according to the relation ∼ which is defined as a ∼ b if and only if a and b generate the
same unital subring. Two vertices are connected by an edge if and only if their representatives
commute. This graph can be seen as a compression of the regular commuting graph Γ(R). We
prove in the thesis that for matrix algebras over finite fields this compression is the best possible
compression that induces a functor from the category of unital rings to the category of graphs.
We also discuss some properties of this graph, for example, the graph gives information about
the set of unital subrings of R generated by one element. This view was applied in our result
characterizing infinite unital rings with only finitely many unital subrings.

In our recent article we were able to completely describe the graph Λ1(M2(F)) for a finite
field F. The main contribution of this thesis is the complete description of the graph Λ1(M3(F))
for a prime field F = GF (p). To achieve this goal we combined methods from field theory,
projective geometry and combinatorics. We first describe the set of vertices, relying on the
Jordan form of matrices, and then determine the structure of the neighborhood of each vertex.
The core part of the graph is then described using a bijective correspondence with a point-line
pairs in the projective plane over GF (p). In addition, we also give a short algorithm that can be
used to construct Λ1(M3(GF (p))). As a consequence of our result we are also able to describe
the graph Γ(M3(GF (p)) using the so-called "blow-up" process. The description of this graph
was an open problem for several years.
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Rezime

U ovoj tezi istražujemo nedavno predstavljeni kompresovani graf komutativnosti Λ1(R) je-
diničnog prstena R. Ovo je graf čiji su vrhovi klase ekvivalencije elemenata prstena R u odnosu
na relaciju ∼ koja je definisana sa a ∼ b ako i samo ako a i b generišu isti jedinični podprsten.
Pri tome, dva čvora su povezana granom ako i samo ako njihovi predstavnici komutiraju. Ovaj
graf se može vidjeti kao kompresija uobičajenog grafa komutativnosti Γ(R). U tezi dokazujemo
da je, za matrične algebre nad konačnim poljima, ova kompresija najbolja moguća kompresija
koja indukuje funktor iz kategorije jediničnih prstena u kategoriju grafova. Takodje, raspravl-
jamo o nekim svojstvima ovog grafa, na primjer, graf daje informacije o skupu jediničnih
podprstena R generisanih jednim elementom. Ovakav pristup je primijenjen u našem rezultatu
koji karakteriše beskonačne jedinične prstenove sa konačnim brojem jediničnih podprstena.

U našem nedavno objavljenom članku uspjeli smo u potpunosti opisati graf Λ1(M2(F)) za
konačno polje F. Glavni doprinos ove teze je potpuni opis grafa Λ1(M3(F)) za prosto polje
F = GF (p). Da bismo postigli ovaj cilj, kombinovali smo metode iz teorije polja, projektivne
geometrije i kombinatorike. Prvo opisujemo skup vrhova, oslanjajući se na Žordanovu formu
matrice, a zatim određujemo strukturu susjedstva svakog vrha. Glavni dio grafa se zatim
opisuje korištenjem bijektivne korespondencije s parovima tačka-linija u projektivnoj ravni nad
poljem GF (p). Osim toga, dajemo i kratki algoritam za konstrukciju Λ1(M3(GF (p))). Kao
posljedica našeg rezultata, takođe smo u mogućnosti opisati graf Γ(M3(GF (p)) korištenjem
takozvanog procesa "eksplozije". Opis ovog grafa bio je otvoren problem nekoliko godina.
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Chapter 1

Introduction

One of the most important notions in algebra is the notion of commutativity. Given an algebraic
structure A, equipped with an operation of multiplication, two elements a and b from A commute
if and only if ab = ba. It is said that an algebraic structure A is commutative if every two
elements from A commute. If the structure A is not commutative, it is important to investigate
the properties of the relation of commutativity in A. There are various approaches to this
problem but one of the most recent ones is to visualize the relation of commutativity using the
graph, the so called commuting graph, where vertices correspond to the non-central elements of
the structure and the edges describe commutativity. This is particularly interesting for finite
structures, since we obtain finite graphs.

To the best of our knowledge, this approach was first developed for groups in [15] as an
attempt towards the classification of finite simple groups. Since then, the commuting graph
of finite groups have been investigated by several authors. In [28] the authors prove that
the isomorphism problem, which asks whether two groups with isomorphic commuting graphs
are themselves isomorphic, has a positive answer for many simple groups. The properties of
the commuting graph of symmetric and alternating groups, in particular, its diameter, was
considered in [29], while the diameter of the commuting graph of a general finite group was
discussed in [36]. Recently, some interesting connections between the structure of the group and
the structure of its commuting graph were discovered in [34]. The definition of the commuting
graph was later extended to several other algebraic structures. For rings, the commuting graph
was introduced in [2] where the authors determined the minimum and maximum degree and
the clique number of the graph of the ring of matrices over a finite field. They also discuss
the isomorphism problem for this graph. The commuting graph of a ring has attracted a lot
of attention since its introduction. The research focuses mainly on the properties of this graph
such as the connectedness and diameter, as well as the isomorphism problem for this graph, see
for example [1, 35, 19, 24]. Furthermore, the commuting graph was also considered for bounded
linear operators on a Hilbert space, see [5]. In [32] it was shown that the commuting graph
of the Banach algebra of bounded linear operators on a complex Hilbert space determines the
dimension of the Hilbert space. Some results can be found on commuting graph of semigroups
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[9], Lie algebras [40], etc.
In this thesis we will be mostly interested in the investigation of the relation of commutativ-

ity in unital rings, in particular, rings of matrices over finite fields. The commuting graph of the
ring was introduced in [2]. Given a ring R, the commuting graph Γ(R) is a simple graph whose
vertices are non-central elements of the ring R and two different elements a, b from the ring are
connected by an edge if and only if ab = ba. Over the past two decades the commuting graph
of a ring was investigated by many researchers who studied the connectedness [1, 20], diameter
and girth [4, 21, 39], clique number [2], etc. Some authors also investigate the complement of
this graph [25].

The main motivation for considering the commuting graph of a ring is to be able to use
graph theoretical tools to investigate and describe the structure and properties of the ring.
This immediately opens an important question whether the graph Γ(R) uniquely determines
the ring R. In particular, if Γ(R1) ∼= Γ(R2) does it follow that R1

∼= R2? This is known
as the isomorphism problem. A particularly important case of this problem is the case when
R1 = Mn(F) is the ring of matrices over a finite field F. In this case the isomorphism problem
has a positive answer when n = 2 and n = 3 as shown in [35] and [24]. Also, when n = 2k3l with
k ≥ 1 a positive answer is given in [23]. For other values for n it is still an open problem. Another
important problem is the problem of automorphism which asks whether any automorphism of
the graph Γ(R) is induced by an automorphism of a ring R, see for example [41].

There are several other types of graphs which help us in understanding the structure and
various properties of rings. Examples of such graphs are the zero-divisor graph [8, 38], the total
graph [6] and inclusion ideal graph [3]. Let us look at the zero-divisor graph more closely, in
order to explain the motivation for the present thesis. The zero-divisor graph of a ring R is
a simple graph whose vertices are nonzero zero-divisors of R where two distinct zero-divisors
a and b are connected by a (directed) edge if and only if ab = 0, see [8, 38]. For certain
rings this graph can have a lot of vertices and edges which makes it hard to visualize. In an
attempt to make the graph smaller and thus more manageable Mulay introduced the graph of
equivalence classes of zero-divisors of a commutative ring, see paper [37]. This graph was later
called the compressed zero-divisor graph by Anderson and LaGrange [7]. Mulay identified the
elements that are indistinguishable in the zero-divisor graph, i.e., have the same annihilator,
and compressed them into one vertex. Although this compression significantly reduces the size
of the vertex set of the graph it lacks certain favorable properties. In particular, it does not
behave well when homomorphisms of rings are considered. To resolve this issue, a new type of
compression was introduced in [16, 17], which was used to define new compressed zero divisor
graph Θ(R). The compression was based on different relation of equivalence, that identified
the elements which generate the same one-sided ideals. The benefit of this new approach is
that the creation of the compressed zero-divisor graph can be extended to a functor Θ from the
category of rings and ring homomorphisms to the category of simple graphs with loops and graph
homomorphisms. Furthermore, this means that the graph Θ(R) better captures the structural
properties of the ring R in the sense that there is a nicer connection between the structure of R
and the structure of Θ(R), see [16, 17] for more details. It was even shown in the same papers
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that the chosen compression is the best possible, i.e., underlying relation of equivalence is the
coarsest relation of equivalence that still induces a functor, see [17, Proposition 2.3].

The starting point for this thesis was the question of whether this categorical approach
can be adapted to the setting of the commuting graph. We want to introduce the compressed
commuting graph Λ1(R) as a compression of the commuting graph Γ(R). Given a unital ring R,
the vertices of Λ1(R) are equivalence classes of elements of R, with respect to the equivalence
relation defined by a ∼ b if and only if elements a and b generate the same unital subring of R.
Two vertices are adjacent if their respective representatives commute in R (see Definition 3.3
for details). Note that we do not exclude the center of R from the graph as in the classical
commuting graph Γ(R). It is shown in the thesis that compression based on this relation of
equivalence induces a functor from the category of unital rings and unital ring homomorphisms
to the category of undirected simple graphs with added loops and graph homomorphisms.
The graph Λ1(R) has significantly smaller number of vertices than Γ(R). Additionally, every
vertex of Λ1(R) corresponds to a unital subring of R generated by one element, so Λ1(R) yields
information about the set of such subrings of R.

The main goal of this thesis is the complete description of the compressed commuting graph
of the ring M3(GF (p)). As evident from the discussion above this graph has great potential
to be used for further investigation of the ring of matrices. For example, having an explicit
description of the graph may help us solve the isomorphism problem for this graph in the future.

One of the primary difficulties was to describe the set of vertices. We tackle this problem
by considering cases based on the Jordan form of a matrix. We show that matrices that are
compressed into a single vertex always have the same Jordan structure with possible different
eigenvalues. That allows us to describe the vertices case by case, which makes the process
of describing compressed commuting graph more manageable. After the set of vertices is
determined, we carefully investigate the structure of the neighborhood of vertices in each case,
determining how many vertices in the neighborhood are of a certain type. It turns out that this
is crucial for detecting that some parts of the graph are easy to describe while some parts are
not. The core part of the graph consists of vertices obtained by compression of non-derogatory
matrices. We describe this part of the graph by establishing a bijective correspondence between
the set of its vertices and the set of point-line pairs in the projective plain over GF (p). Using
this correspondence, we then describe the edges between the vertices of this part of the graph
using the geometry of point-line pairs.

The rest of the graph is obtained by attaching vertices from other cases, respecting the
neighborhoods of vertices, determined in the previous observations. Finally, this allows us
to give an explicit algorithm for the construction of the entire compressed commuting graph
of the ring M3(GF (p)). As an application of our result, we are also able to construct the
ordinary commuting graph of the ring M3(GF (p)) from the compressed commuting graph,
by blowing-up the vertices into cliques and removing the center of the ring and all the loops.
The construction of Γ(M3(GF (p))) was an open problem for several years, so this can also be
considered as a significant result of the research.

Finally, we give here an outline of the thesis. In Chapter 2 we present some basic results
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from group theory and matrix theory that we need throughout the thesis. In Chapter 3 we
introduce the compressed commuting graph of a unital ring and discuss its properties. In
particular, we prove that our compression is the best possible for the categorical approach,
since the underlying relation of equivalence is the coarsest one that still induces a functor.
Furthermore, we characterize all infinite unital rings that have a finite compressed commuting
graph.

The problem of construction of Λ1(M2(GF (p)) is discussed in Chapter 4. It is detected
that the problem has to be broken into several cases, depending on the Jordan canonical form
of the matrix in question. In every case of the problem, we describe the subset of the set
of vertices belonging to certain case. Combining the results from all the cases, we obtain a
description of the set of all vertices of Λ1(M2(GF (p)). We continue with the discussion on the
set of edges, and prove the interesting fact that there are no edges between vertices represented
by non-derogatory matrices other than loops, see Proposition 4.4. Applying this proposition
we are able to describe the set of edges of Λ1(M2(GF (p)). It turns out that the proposition
mentioned above is of great importance also in the case of the ring of matrices of order 3 and
may be useful even for matrices of higher order.

The description of the graph Λ1(M3(GF (p))) is given in Chapters 5 – 8. We start with
the description of the set of vertices of Λ1(M3(GF (p))) in Chapter 5, using the same idea of
breaking into cases as in Chapter 4. For each case separately, we determine the number of
vertices corresponding to a given case and collect the results in a table that describes the set
of all vertices. Next, we investigate the neighborhood of vertices in Chapter 6, going case by
case. As a result we obtain the table containing the number of vertices from each case in the
neighborhood of a vertex of a given type.

In Chapter 7 we use data obtained in Chapters 5 and 6 and construct the subgraph of
Λ1(M3(GF (p))), induced on the union of the set of vertices from two cases, namely (B) and
(E). An interesting connection between this subgraph and a projective plane is discovered, and
this connection is crucial for the subgraph description. The description of the whole graph
Λ1(M3(GF (p))) is finalized in Chapter 8. The goal is achieved by investigating how other
types of vertices are attached to the subgraph induced on V(B)∪V(E). Furthermore, we also give
an algorithm for the construction of the graph Λ1(M3(GF (p))).

In the last chapter, Chapter 9, we apply our results to the study of the usual commuting
graph Γ(M3(GF (p))). In particular, we give an algorithm for the construction of the graph
Γ(M3(GF (p))) from the graph Λ1(M3(GF (p))) and table from Chapter 5.
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Chapter 2

Preliminaries

Since the main problem addressed in the thesis is the description of the compressed commuting
graph of the ring of matrices M3(GF (p)), we first list some basic definitions and theorems from
linear algebra that we will need in the thesis. Although most of the claims hold for matrices of
arbitrary order we will formulate some of them only for matrices of order 3.

Theorem 2.1. The characteristic polynomial of a matrix A ∈ M3(GF (p)) has the form

pA(λ) = −λ3 + tr(A)λ2 − (A11 + A22 + A33)λ+ det(A),

where tr(A) is the trace of A, Aii, i = 1, 2, 3, are the co-factors of A and det(A) is the determi-
nant of A.

Proof. Let A ∈ M3(GF (p)) be an arbitrary matrix. Then we have

pA(λ) = det(A− λI)

=

∣∣∣∣∣∣
a11 − λ a12 a13
a21 a22 − λ a23
a31 a32 a33 − λ

∣∣∣∣∣∣
= (a11 − λ)(a22 − λ)(a33 − λ) + a12a23a31 + a13a21a32

− a31(a22 − λ)a13 − a32a23(a11 − λ)− a21a12(a33 − λ)

= (a11a22 − a11λ− a22λ+ λ2)(a33 − λ) + a12a23a31 + a13a21a32

− a31a22a13 + a31a13λ− a32a23a11 + a32a23λ− a21a12a33 + a21a12λ

= a11a22a33 − a11a33λ− a22a33λ+ a33λ
2

− a11a22λ+ a11λ
2 + a22λ

2 − λ3 + a12a23a31 + a13a21a32

− a31a22a13 + a31a13λ− a32a23a11 + a32a23λ− a21a12a33 + a21a12λ

= −λ3 + λ2(a11 + a22 + a33)− λ(a11a33 + a22a33 + a11a12 − a31a13 − a32a23 − a21a12)

+ a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a21a12a33

= −λ3 + tr(A)λ2 − (A11 + A22 + A33)λ+ det(A).
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This completes the proof. □

Definition 2.2. We say that a non-zero polynomial q ∈ GF (p)[x] is an annihilating polynomial
of matrix A if q(A) = 0.

Note that polynomial q ∈ GF (p)[x] can be represented by a polynomial q̂ ∈ Z[x]. Evaluating
this polynomial in the matrix A over the field GF (p) we have q̂(A) = q(A). So, from the point
of evaluation of polynomials we can consider polynomials to be from Z[x].

The following theorem is known as the Cayley Hamilton theorem.

Theorem 2.3. Every matrix A ∈ M3(GF (p)) is annihilated by its own characteristic polyno-
mial, i.e.,

pA(A) = −A3 + tr(A) · A2 + (A11 + A22 + A33) · A+ det(A) · I = 0

Proof. Let A ∈ M3(GF (p)) be an arbitrary matrix. Then we have

A− λI =

a11 a12 a13
a21 a22 a23
a31 a32 a33

−

λ 0 0
0 λ 0
0 0 λ


=

a11 − λ a12 a13
a21 a22 − λ a23
a31 a32 a33 − λ

 .

The adjoint matrix of A− λI is equal to

Adj(A− λI) =

(A− λI)11 (A− λI)21 (A− λI)31
(A− λI)12 (A− λI)22 (A− λI)32
(A− λI)13 (A− λI)23 (A− λI)33

 ,

where all of the entries are polynomials in λ with maximal degree 2. For example

(A− λI)12 = (−1)1+2

∣∣∣∣a21 a23
a31 a33 − λ

∣∣∣∣
= −(a21(a33 − λ)− a31a23)

= −(a21a33 − a21λ− a31a23)

= −a21a33 + a21λ+ a31a23)

= a21λ+ (a31a23 − a21a33),

whose degree is 1, or

(A− λI)11 = (−1)1+1

∣∣∣∣a22 − λ a23
a32 a33 − λ

∣∣∣∣
= (a22 − λ)(a33 − λ)− a32a23

= λ2 − (a22 + a33)λ+ a22a33 − a23a32,
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of degree 2. So, all the entries in matrix Adj(A− λI) are polynomials with maximal degree 2,
i.e., Adj(A − λI) ∈ M3(GF (p)[λ]). We can collect the coefficients of quadratic terms from all
entries and form a matrix B2, collect the coefficients of linear terms from all entries and form
a matrix B1 and collect the coefficients of free terms from all entries and form a matrix B0.
Now, matrix Adj(A− λI) can be written as

Adj(A− λI) = B2λ
2 +B1λ+B0, (2.1)

in other words, Adj(A− λI) ∈
(
M3

(
GF (p)

))
[λ].

From [27, Chapter VII, Proposition 3.7] we know that

Adj(M) ·M = M · Adj(M) = det(M) · I.

Taking M = A− λI, we have

(A− λI)Adj(A− λI) = det(A− λI)I, (2.2)

where we recognize the characteristic polynomial on the right side of equation (2.2), i.e.,

(A− λI)Adj(A− λI) = pA(λ)I.

If we use equation (2.1) on the left side of (2.2) and Theorem 2.1 on the right side, we get

(A− λI)(B2λ
2 +B1λ+B0) = pA(λ)I,

AB2λ
2 + AB1λ+ AB0 −B2λ

3 −B1λ
2 −B0λ =

(
− λ3 + tr(A)λ2 − (A11 + A22 + A33)λ+ det(A)

)
I,

−B2λ
3 + (AB2 −B1)λ

2 + (AB1 −B0)λ+ AB0 = −λ3I + tr(A)λ2I − (A11 + A22 + A33)λI + det(A)I.

Considered as an equality in
(
M3

(
GF (p)

))
[λ], the space of polynomials with matrix co-

efficients from M3(GF (p)), the last equality is equivalent to the system of four equalities in
M3

(
GF (p)

)
, namely 

−B2 = −I,

AB2 −B1 = tr(A)I,

AB1 −B0 = −(A11 + A22 + A33)I,

AB0 = det(A)I.

Multiplying the first equation with A3 from the left, the second with A2 and third with A, we
get 

−A3B2 = −A3,

A3B2 − A2B1 = tr(A)A2,

A2B1 − AB0 = −(A11 + A22 + A33)A,

AB0 = det(A)I.
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Adding all the right sides, we obtain

−A3 + tr(A)A2 − (A11 + A22 + A33)A+ det(A)I

which is obviously pA(A). Adding all the left sides, we get 0, hence

pA(A) = 0,

which is what we wanted to prove. □

One of the annihilating polynomials is of particular interest for our topic.

Definition 2.4. Polynomial mA ∈ GF (p)[x] is a minimal polynomial of matrix A if it satisfies
the following conditions:

1) mA(A) = 0,

2) mA is monic, i.e., the leading coefficient of mA is 1, and

3) if q ∈ GF (p)[x] is any non-zero polynomial that annihilates matrix A, then
deg(mA) ≤ deg(q).

In next proposition we prove a basic property of minimal polynomial.

Proposition 2.5. For every matrix A ∈ M3(GF (p)) there exists a unique minimal polynomial
mA.

Proof. First, the set of annihilating polynomials has at least one monic member, because −pA is
a monic annihilating polynomial by Theorem 2.3. So, there exists an annihilating polynomial of
the smallest degree. If we normalize this polynomial to be monic, we get a minimal polynomial.
Therefore, A has at least one minimal polynomial mA. To prove uniqueness, suppose that m1

A

and m2
A are two different minimal polynomials of A. Then m1

A−m2
A is non-zero by assumption,

and is an annihilating polynomial of A. But m1
A and m2

A have the same degree, and each
has leading coefficient 1, so m1

A − m2
A has degree less than that of mA. This contradicts the

minimality of the degree of mA. □

The following proposition connects minimal and annihilating polynomials.

Proposition 2.6. For any polynomial s we have s(A) = 0 if and only if mA divides s.

Proof. If mA divides s then clearly s(A) = 0. To prove the converse, we use the result known
as Euclid’s algorithm or "the division algorithm" which implies that for polynomials s and mA

there are polynomials q and r such that s = q ·mA + r and r is either the zero polynomial or
has degree less than that of mA. Now, r(A) = s(A)−q(A) ·mA(A) = 0−0 = 0, so by definition
of minimal polynomial r = 0. Hence mA divides s. □
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In next theorem we consider the eigenvalues of a matrix A ∈ M3(GF (p)) as elements of
the algebraic closure of GF (p).

Theorem 2.7. Any eigenvalue of a matrix A ∈ M3(GF (p)) is a root of its minimal polynomial,
so the minimal polynomial and the characteristic polynomial have the same roots.

Proof. Say λ is an eigenvalue of a matrix A in the algebraic closure GF (p). We want to show
that mA(λ) = 0. There is an eigenvector v ̸= 0 in GF (p)

3
for this eigenvalue, i.e., Av = λv.

Then Akv = λkv, for all k ≥ 1, so f(A)v = f(λ)v for all f ∈ GF (p)[x]. In particular, taking
f(x) = mA(x), we have mA(A) = 0 so 0 = mA(λ)v. Thus mA(λ) = 0. □

Theorem 2.8. Irreducible factors of the characteristic polynomial of A are factors of the min-
imal polynomial of A and vice versa.

Proof. Any irreducible factor of the minimal polynomial of A is a factor of the characteristic
polynomial since the minimal polynomial divides the characteristic polynomial, as a conse-
quence of Cayley Hamilton theorem and Proposition 2.6. Conversely, if π(x) is an irreducible
factor of the characteristic polynomial, a root of it, possibly in the extension field, is an eigen-
value and therefore is also a root of the minimal polynomial by Theorem 2.7. Any polynomial in
GF (p)[x] sharing a root with π(x) is divisible by π(x), so π(x) divides the minimal polynomial.
□

Theorem 2.9. Suppose A ∈ M3(GF (p)) is a block-diagonal matrix with A1 and A2 as the
diagonal blocks, i.e.,

A =

[
A1

A2

]
.

Then the minimal polynomial of A is the least common multiple (lcm) of the minimal polyno-
mials of A1 and A2.

Proof. Let mA(x) be the minimal polynomial of A, mA1(x) and mA2(x) the minimal polynomials
of A1 and A2, respectively. According to Definition 2.4 we have mA(A) = 0 which is equivalent
to

mA(A) = mA

([
A1

A2

])
=

[
mA(A1)

mA(A2)

]
=

[
0

0

]
.

Last equality implies mA(A1) = 0 and mA(A2) = 0. Now, from Proposition 2.6 we have mA1

divides mA and mA2 divides mA, so

lcm(mA1 ,mA2) divides mA. (2.3)

Let f be an arbitrary polynomial such that mA1 divides f and mA2 divides f. Then we have

f(A) =

[
f(A1)

f(A2)

]
=

[
0 0
0 0

]
,

9



so f(A) = 0. By Proposition 2.6 we conclude mA(x) divides f. Therefore, if we take
f = lcm(mA1 ,mA2) we obtain

mA(x) divides lcm(mA1 ,mA2). (2.4)

From (2.3) and (2.4) we get mA(x) = lcm(mA1 ,mA2). □

Let us recall one of the basic concepts when we talk about commutativity.

Definition 2.10. The centralizer of a matrix A from Mn(GF (p)), denoted by C (A), is the
set of all matrices from Mn(GF (p)) which commute with A, i.e.,

C (A) = {X ∈ Mn(GF (p)) : AX = XA}.

Note that the intersection of the centralizers of all matrices is the center of the ring of
matrices M3(GF (p)) and is denoted by Z(M3(GF (p))).

Definition 2.11. A non-derogatory matrix is one, whose minimal polynomial equals its char-
acteristic polynomial, up to a sign, while a matrix is derogatory, if they do not coincide.

The following characterization of the non-derogatory matrices is taken from [18].

Theorem 2.12. For a matrix A ∈ Mn(GF (p)) the following statements are equivalent:

(i) A is non-derogatory,

(ii) C (A) = ⟨A⟩1.

Proof. From [18, Theorem 2.8] it follows that for integer n ≥ 2 and a field F such that |F| ≥ n
a matrix A from Mn(F) is non-derogatory if and only if C (A) = F[A], where F[A] denotes the
unital subalgebra generated by A.

We claim that the above is true even without the restrictions on n and |F|. Suppose n and
F are arbitrary. First, note that if n = 1 then every matrix A is non-derogatory and satisfies
the equality C (A) = F[A]. Assume n ≥ 2 and denote by F the algebraic closure of the field
F. Now, let A ∈ Mn(F). Denote the minimal polynomial of A over F by mA, and denote the
minimal polynomial of A over F by mA. We claim that

mA = mA. (2.5)

Suppose mA(x) = xk + ak−1x
k−1 + · · ·+ a1x+ a0 where ai are from F. Then a0, a1, . . . , ak−1 are

solution of matrix equation mA(A) = 0, where the coefficients of mA are viewed as variables.
This equation is equivalent to a system of n2 linear equations with coefficient in F. Since this
system has a solution in F, the Gaussian algorithm implies that it has a solution also in F. This
implies that degmA ≤ degmA. Since mA is annihilating polynomial of A and mA is the minimal
polynomial with coefficient in F it holds that mA divides mA. Combining the two conditions
we get mA = mA.
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Denote by C (A) the centralizer of A inside Mn(F) and by C (A) the centralizer of A inside
Mn(F). We claim that

dimF C (A) = dimF C (A). (2.6)

The set C (A) is the set of solutions from Mn(F) of the matrix equation XA = AX. This
equation is equivalent to the system of n2 linear equations with coefficients in F. Denote the
matrix of the system by M. Then, M is the element of Mn2(F). Furthermore, dimF C (A) is
equal to the rank of matrix M. The same conclusions hold for C (A), because M is not changed.
This proves equation (2.6).

Equation (2.5) implies that A ∈ Mn(F) is non-derogatory if and only if A ∈ Mn(F) is non-
derogatory. Furthermore, equations (2.5) and (2.6) imply that the condition C (A) = F[A] is
equivalent to C (A) = F[A]. The condition C (A) = F[A] is equivalent to dimF C (A) = degmA.
By equations (2.5) and (2.6) the later condition is equivalent to dimF C (A) = degmA. This is
further equivalent to C (A) = F[A].

Since F is not finite, it holds |F| > n, so from [18, Theorem 2.8] that the conditions

(a) A ∈ Mn(F) is non-derogatory,

(b) C (A) = F[A],

are equivalent, hence, by the above, the conditions

(c) A ∈ Mn(F) is non-derogatory,

(d) C (A) = F[A],

are also equivalent. In our case F = GF (p), so that F[A] = ⟨A⟩1, and the claim follows. □

Definition 2.13. The kernel of a matrix A ∈ M3(GF (p)), also called the null space of a
matrix A, is the kernel of the linear map A : GF (p)3 → GF (p)3 defined by A, i.e.,

KerA = {v ∈ GF (p)3 : A(v) = 0} = {v ∈ GF (p)3 : A · v = 0}.

Definition 2.14. The image of a matrix A ∈ M3(GF (p)), is the image of the linear map
A : GF (p)3 → GF (p)3 defined by v 7→ Av, i.e.,

ImA = {A(v) : v ∈ GF (p)3} = {Av : v ∈ GF (p)3}.

In what follows we will introduce the Jordan form of a given matrix. We remark that Jordan
form of a matrix is usually defined over the algebraic closure of the base field, but here we will
need the Jordan form over the base field, when it exists.
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Definition 2.15. A Jordan block Jλ,k is a square matrix over the field GF (p) of the form

Jλ,k =



λ 1
λ 1

. . . . . .
λ 1

λ 1
λ


k×k

(2.7)

where the missing entries are all zero.

Definition 2.16. A square matrix J over the field GF (p) is said to be in Jordan form if it is
block diagonal where each diagonal block is a Jordan block.

J =


Jλ1,k1

Jλ2,k2
. . .

Jλl,kl


n×n

(2.8)

where n = k1 + k2 + · · ·+ kl and the missing entries are all zero.
We omit the proofs of the following propositions for the sake of brevity. They can be found

in [31].

Proposition 2.17. Let A be a square matrix over the field GF (p). If the minimal polynomial
of A splits into linear factors over GF (p) then there exists a square matrix J in Jordan form,
similar to matrix A. It is said that A has Jordan canonical form J.

Proposition 2.18. Jordan canonical form of a square matrix A is unique up to the order of
Jordan blocks.

Proposition 2.19. Let A be a square matrix over the field GF (p) and λ ∈ GF (p) be an
eigenvalue of A. The geometric multiplicity of λ, i.e., the dimension of the λ−eigenspace of A,
is equal to the number of Jordan blocks in the Jordan form of the matrix A.

Proposition 2.20. The size of the largest Jordan block corresponding to an eigenvalue λ ∈
GF (p) of A is exactly the degree of the term (x− λ) in the minimal polynomial of A, i.e., the
algebraic multiplicity of eigenvalue λ.

Next, we calculate the number of invertible matrices of order n.

Proposition 2.21. The number of invertible matrices in Mn(GF (p)) is equal to

|GLn(GF (p))| = (pn − 1)(pn − p) · · · (pn − pn−1).

12



Proof. In order for an n×n matrix to be invertible, we need the rows to be linearly independent.
Clearly, we have pn − 1 choices for the first row. Now, there are p vectors in the span of the
first row, so we have pn − p choices for the second row. Now, let v1, v2 be the first two rows.
Then the set of vectors in the span of v1, v2 is of the form {c1v1 + c2v2 : c1, c2 ∈ GF (p)}. This
set is of size p2, as we have p choices for c1 and p choices for c2. Thus, we have pn − p2 choices
for the third row. Continuing this way gives the desired formula. □

Later on, we will need the center of the ring of matrices, so we determine it in next propo-
sition.

Proposition 2.22. The center of Mn(GF (p)) consists of the scalar multiples of the identity
matrix, i.e.,

Z(Mn(GF (p)) = GF (p)I.

Proof. Suppose A ∈ Mn(GF (p)). Let Ei,j be the matrix whose (i, j) entry is 1 ∈ GF (p), and
all other entries are 0 ∈ GF (p). Then the equations

Ei,i · A = A · Ei,i, i = 1, 2, 3,

imply that A is necessarily diagonal. Furthermore, equations

Ei,j · A = A · Ei,j, 1 ≤ i ̸= j ≤ n,

imply that ai,i = aj,j for all i, j ∈ {1, 2, . . . , n}. Consequently, there exists a ∈ GF (p) such that
A = aI. □

Recall that the group of invertible matrices GLn(GF (p)) acts on the set of all matrices
Mn(GF (p)) by conjugation. The orbit of a given matrix A with respect to this action is

O(A) = {M ∈ Mn(GF (p)) : M similar toA}.

In next proposition we calculate the cardinality of the orbit.

Proposition 2.23. Let A ∈ Mn(GF (p)). Then

|O(A)| =
∣∣GLn(GF (p))

∣∣∣∣C (A) ∩GLn(GF (p))
∣∣ .

Proof. Note that

|O(A)| = |{M ∈ Mn(GF (p)) : M similar toA}| = |{SAS−1 : S ∈ GLn(GF (p))}|.

Two invertible matrices S, T ∈ GLn(GF (p)) induce the same matrix SAS−1 = TAT−1 if and
only if T−1SA = AT−1S, which is equivalent to T−1S ∈ C (A). This is further equivalent to
SH = TH where H = C (A) ∩GLn(GF (p)) is a subgroup of GLn(GF (p)). Hence,

|O(A)| = |GLn(GF (p))/H| = |GLn(GF (p)|
|C (A) ∩GLn(GF (p))|

.

□
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Next proposition gives some of the similarity invariants that will be used in our arguments.

Proposition 2.24. Suppose A and B are matrices over the field F. If A and B are similar
matrices then

1) dimKerA = dimKerB,

2) A and B have the same eigenvalues with the same algebraic and geometric multiplicities.

Proof. 1) As B is similar to A there exists an invertible matrix S such that B = SAS−1. Last
equation is equivalent to S−1B = AS−1. Observe that if x ∈ KerB then S−1x ∈ KerA.

We claim that if {v1, v2, . . . vk} is a basis for KerB then the vectors S−1v1, S
−1v2, . . . , S

−1vk
are linearly independent. Suppose ci ∈ GF (p) for each i = 1, 2, . . . , k are such that

c1S
−1v1 + c2S

−1v2 + · · ·+ ckS
−1vk = 0.

By linearity we can move the constants in-between the matrix and the vectors and then by the
linearity again we can pull S−1 out so we get

S−1(c1v1 + c2v2 + · · · ckvk) = 0.

However, S−1 is invertible so if we multiply by S we get

c1v1 + c2v2 + · · · ckvk = 0.

Since v1, v2, . . . vk are linearly independent, we have c1 = c2 = · · · = ck = 0, so the vectors
S−1v1, S

−1v2, . . . , S
−1vk are linearly independent. Furthermore, vectors S−1v1, S

−1v2, . . . , S
−1vk

belong to KerA, which implies that

dimKerB ≤ dimKerA. (2.9)

Similarly, by reversing the roles of A and B we get the other inequality

dimKerA ≤ dimKerB. (2.10)

Conjunction of inequalities (2.9) and (2.10) is equivalent to equality 1).
2) Note that pB(x) = det(B−λI) = det(SAS−1−SλIS−1) = det(S(A−λI)S−1) = det(A−

λI) = pA(x). This proves that every common eigenvalue of A and B has the same algebraic
multiplicity. Using statement 1) it is obvious that corresponding geometric multiplicities are
equal. □
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Chapter 3

Compressed commuting graph of a unital
ring

We will assume throughout this chapter that R is a unital ring with identity element 1. In
what follows, we will introduce the commuting graph Γ(R) as defined in [2] and the compressed
commuting graph of unital ring Λ1(R) as defined in [13].

Definition 3.1. A commuting graph of a unital ring R is an undirected graph Γ(R) whose
vertex set is the set of all non-central elements of R and there is an edge between two different
elements a and b if and only if ab = ba.

Definition 3.2. A unital subring of R generated by an element a from R will be denoted by
⟨a⟩1, i.e.,

⟨a⟩1 = {q(a) | q ∈ Z[x]}, (3.1)

where Z[x] denotes the ring of polynomials with integer coefficients and in the evaluation of
q(a) the constant term is multiplied by the identity element 1.

We introduce an equivalence relation ∼ on R defined by a ∼ b if and only if ⟨a⟩1 = ⟨b⟩1,
and denote the equivalence class of an element a ∈ R with respect to relation ∼ by [a]1. By
definition [a]1 consists of all single generators of the ring ⟨a⟩1.

Definition 3.3. A unital compressed commuting graph of a unital ring R is an undirected
graph Λ1(R) whose vertex set is the set of all equivalence classes of elements of R with respect
to relation ∼ and there is an edge between [a]1 and [b]1 if and only if ab = ba.

We need to prove that edges in Λ1(R) are well defined. Suppose that [a]1 = [a′]1, [b]1 = [b′]1,
and ab = ba, then a′ ∈ ⟨a⟩1 and b′ ∈ ⟨b⟩1, hence, a′, b′ ∈ ⟨a, b⟩1, the subring generated by two
elements a and b. But since a and b commute, ⟨a, b⟩1 is a commutative ring, hence a′ and b′

commute as well. It should be remarked that central elements of R are not excluded from the
graph Λ1(R) like in the usual commuting graph Γ(R). Furthermore, loops are allowed in Λ1(R),
in fact, every vertex of Λ1(R) has a single loop on it.
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In [13] the authors also introduce a non-unital version of the compressed commuting graph,
denoted by Λ(R), however, here we will be interested in unital version only, hence, we will often
omit the adjective "unital" and simply speak about compressed commuting graph. The reader
can find the connection between the two versions of the graph in the [13].

Note an important fact that each vertex of Λ1(R) corresponds to a subring of R generated
by one element. This means that we could equivalently define the compressed commuting graph
of R as an undirected graph whose vertex set is the set

V (Λ1(R)) = {⟨a⟩1 | a ∈ R},

the set of all subrings of R generated by one element, and vertices ⟨a⟩1 and ⟨b⟩1 are connected
by an edge if and only if ab = ba.

The mapping Λ1 can be extended to a functor Λ1 from the category Ring1 of unital rings
and unital ring homomorphisms to the category Graph of undirected simple graphs that allow
loops and graph homomorphisms. For a ring homomorphism f : R → S, where R and S are
unital rings, we define a graph homomorphism Λ1(f) : Λ1(R) → Λ1(S) by Λ1(f)([r]1) = [f(r)]1.
We need to verify that the map Λ1(f) is well defined. If [r]1 = [r′]1 then there exist polynomials
p, q ∈ Z[x] such that r′ = p(r) and r = q(r′). Hence, f(r′) = p(f(r)) and f(r) = q(f(r′)) and
consequently [f(r)]1 = [f(r′)]1. Furthermore, Λ1(f) maps connected vertices to connected
vertices since ab = ba implies f(a)f(b) = f(b)f(a). So the map Λ1(f) is indeed a graph
homomorphism. Here the zero ring R = 0 is considered as a unital ring with 1 = 0. It is easy
to check that Λ1(idR) = idΛ1(R) for any ring R and Λ1(f ◦ g) = Λ1(f) ◦Λ1(g) for all unital ring
homomorphisms f : S → T and g : R → S. This proves the following.

Proposition 3.4. The mapping Λ1 : Ring1 → Graph that maps a unital ring R to the graph
Λ1(R) and a ring homomorphism f to the graph homomorphism Λ1(f) is a functor.

The following gives the motivation for choosing the particular equivalence relation in Def-
inition 3.3. It implies that, at least on finite unital algebras, the relation ∼ is the coarsest
relation that still induces a functor.

Theorem 3.5. For each unital ring R let ≈R be an equivalence relation on R such that the
family {≈R | R a unital ring } induces a well defined functor F : Ring1 → Graph in the
following way:

(i) For each unital ring R the vertices of F (R) are equivalence classes [r]≈R
of elements of

R with respect to ≈R and there is an edge between [a]≈R
and [b]≈R

if and only if ab = ba.

(ii) For each unital ring homomorphism f : R → S, where R and S are unital rings, the graph
homomorphism F (f) : F (R) → F (S) is given by F (f)([r]≈R

) = [f(r)]≈S
for all r ∈ R.

Then for any finite unital algebra A and for any a, b ∈ A the condition a ≈A b implies a ∼ b.
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Proof. Let A be a finite unital algebra. Since it is finite, it is an algebra over a finite field F,
the characteristic of F is a prime p, and its prime field is GF (p). Thus, we may consider A as a
finite dimensional algebra over GF (p). Hence, the algebra E = EndGF (p)(A) of all GF (p)-linear
transformations on A is isomorphic to a matrix algebra Mn(GF (p)), where n = dimGF (p) A.
Let L : A → E be the left regular representation of A given by L(a) = La for all a ∈ A, where
La denotes left multiplication by a. Now suppose a ≈A b holds in A. Since L is a unital ring
homomorphism, item (ii) implies that La ≈E Lb. The fact that edges in item (ii) must be
well defined implies C (La) = C (Lb). Since E is isomorphic to a full matrix algebra, it follows
from the Centralizer Theorem [30, p. 113, Corollary 2] that this is equivalent to GF (p)[La] =
GF (p)[Lb], where GF (p)[La] denotes the unital GF (p)-algebra generated by La, see [18, Lemma
2.4]. But GF (p) ∼= Zp is a factor ring of Z, so that GF (p)[La] = ⟨La⟩1 and consequently
⟨La⟩1 = ⟨Lb⟩1. Hence, there exist polynomials P,Q ∈ Z[x] such that La = P (Lb) = LP (b) and
Lb = Q(La) = LQ(a). Applying these transformations to 1 ∈ A gives a = P (b) and b = Q(a),
hence ⟨a⟩1 = ⟨b⟩1 and a ∼ b. □

Since the motivation for the compression is to make a graph smaller it is interesting to ask
whether an infinite unital ring can have a finite compressed commuting graph. In the paper
[14] it is shown that this is indeed possible and it is also possible to classify all such rings.

Theorem 3.6. If R is an infinite unital ring, then either |V (Λ1(R))| = |R| or R is isomorphic
to a unital semidirect product Z[ 1

m
]⋉ I for some positive integer m and some finite Z[ 1

m
]-ring

I. In the later case we have |R| = ℵ0 and |V (Λ1(R))| < ℵ0.

We omit the proof of the theorem and the reader can find it in [14]. In this thesis our focus
will be on finite rings of matrices over GF (p) of orders 2 and 3. In next chapter we will start
with matrices of order 2.
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Chapter 4

Compressed commuting graph of
M2(GF (p))

Since any similarity is a ring isomorphism, it induces a graph isomorphism, see Proposition 3.4.
This means that similar matrices will behave the same way in the compressed commuting graph
construction process. When considering a specific matrix we can consider its nicest possible
form which will be the Jordan canonical form in the case when all the zeros of the characteristic
polynomial lie in the field GF (p) and if not we will use the companion matrix instead.

Therefore, the problem of describing the vertices of the compressed commuting graph of the
ring M2(GF (p)) will be divided into the following cases depending on how the characteristic
polynomial of a matrix splits over the field GF (p).

Case (A): Diagonalizable matrices with one double eigenvalue λ ∈ GF (p), i.e., similar to

A =

[
λ 0
0 λ

]
.

Case (B): Diagonalizable matrices with two different eigenvalues λ and µ from GF (p), i.e.,
similar to

A =

[
λ 0
0 µ

]
.

Case (C): Non-diagonalizable matrices with one double eigenvalue λ ∈ GF (p), i.e., similar to

A =

[
λ 1
0 λ

]
.

Case (D): Matrices whose characteristic polynomial is irreducible over GF (p), i.e., with no
eigenvalues in the field GF (p).

We will refer to matrices from case (X) as matrices of type (X).
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Proposition 4.1. Suppose A and B are two matrices from M2(GF (p)). If ⟨A⟩1 = ⟨B⟩1 then
A and B are of the same type.

Proof. First note that degmA = degmB. We consider two cases, depending on the degree of
mA. Assume first that degmA = 1. In this case matrix A is clearly a scalar matrix. Then
⟨A⟩1 = GF (p)I, so B is also scalar matrix and this means that both of them are of type (A).
Now assume that degmA = 2. Further, we will discuss two subcases, depending whether mA

splits over GF (p) or not.
Assume first that mA splits. It means that matrix A is similar to a matrix in Jordan form.

Without lost of generality we can assume that A is in Jordan form. As ⟨A⟩1 = ⟨B⟩1 there
exist polynomials q and r such that B = q(A) and A = r(B). This implies that the number of
different eigenvalues is the same for both matrices. If the mentioned number is 2 then matrices
are both diagonalizable so they are of type (B). On the other hand, if the number is 1 then
matrix A and Jordan form of matrix B have only one Jordan block, i.e., they are of type (C).

Finally, assume that mA does not split, so mA is irreducible and A is of type (D). Eigenvalues
of A are not in GF (p) so as A = r(B), eigenvalues of B are not in the GF (p) either, i.e.,
pB = mB is irreducible, which means that B is of type (D) as well. This completes the proof.

□

From Proposition 4.1 we know that all matrices that will be compressed into one vertex are
matrices of the same type. This means that we can speak about the type of a vertex in the
compressed commuting graph.

Similarly as for the matrices from M2(GF (p)) the breaking into cases will also be done for
matrices from M3(GF (p)) in Chapter 5. The following definition and proposition are valid for
both n = 2 and n = 3.

Definition 4.2. Define V(X) ⊆ V (Λ1(Mn(GF (p))) as the set of vertices of type (X), where
n = 2 or n = 3.

Proposition 4.3. Suppose we have a vertex of type (X), represented by a matrix A of order n,
where n = 2 or n = 3. Assume that O(A) intersects every vertex of type (X) and let

ωA = |⟨A⟩1 ∩ O(A)|. (4.1)

Then
|V(X)| =

|O(A)|
ωA

=
|GLn(GF (p))|

|C (A) ∩GLn(GF (p))| · ωA

. (4.2)

Proof. As shown in the proof of Proposition 2.23, some of the matrices similar to the matrix
A lie inside the subring ⟨A⟩1, but some of them do not. Those which do not will be generators
of the isomorphic copies of the subring ⟨A⟩1. To count the number of vertices of type (X), we
will need to count how many matrices similar to A lie in the subring ⟨A⟩1.

Let M ∈ O(A) be arbitrary. Then M is similar to A, i.e., there exists an invertible matrix S
such that M = SAS−1. The conjugation mapping Y 7→ SY S−1 is bijection from set ⟨A⟩1∩O(A)
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to the set ⟨M⟩1 ∩O(A), so all of the sets ⟨M⟩1 ∩O(A), M ∈ O(A), are of the same cardinality
and this cardinality is equal to ωA.

Note that any W from ⟨M⟩1 ∩O(A) is automatically a generator of ⟨M⟩1. This is because
W is similar to A and hence similar to M , so three of them have the same degree of minimal
polynomial, see Proposition 2.24. Since W is from ⟨M⟩1 this implies that W is a generator of
⟨M⟩1. Hence, matrices in ⟨M⟩1 ∩ O(A) are compressed into the same vertex.

It follows that the number of vertices obtained from matrices of type (X) is equal to

|V(X)| =
|O(A)|
ωA

.

Equation (4.2) now follows from Proposition 2.23. □

Now, we consider the cases and calculate the number of vertices in Λ1(M2(GF (p))) of each
type.

Case (A): Diagonalizable matrices with one double eigenvalue λ ∈ GF (p), i.e., similar to

A =

[
λ 0
0 λ

]
.

Note that matrix A is a scalar matrix, i.e., A = λ·I. For every matrix B similar to A = λI there
exists invertible matrix S such that B = SAS−1 = SλIS−1 = λI i.e., there are no matrices
of type (A) except of p scalar matrices. No two of them are similar as they have different
eigenvalues.

The minimal polynomial of A is mA(x) = x−λ, which is of degree 1. This fact can be used
to find general form of the element of the subring ⟨A⟩1. Namely,

⟨A⟩1 = {q(A) : q ∈ Z[x]} = {q(A) : q ∈ GF (p)[x]}
= {q(A) : deg(q) = 0} = GF (p) · I,

This means that subring consists only of matrices of type (A), and subring contains every
matrix from case (A).

As we discussed all of the previous calculations for arbitrary A = λI, every matrix from the
set GF (p) · I is generator of the unique subring GF (p) · I. In other words, there are no proper
subrings of the subring ⟨A⟩1, i.e, all of the matrices from this case will be compressed into one
point in Λ1(M2(GF (p))), i.e.,

|V(A)| = 1.

Case (B): Diagonalizable matrices with two different eigenvalues λ, µ ∈ GF (p), i.e., similar
to

A =

[
λ 0
0 µ

]
.
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From the Jordan canonical form and Theorem 2.7 we see that mA = pA, i.e., all the matrices
from this case are non-derogatory. This means that matrix A generates a subring of dimension
2. As every matrix in the subring ⟨A⟩1 is clearly diagonal, and the space of all diagonal matrices
is of dimension 2, the ring ⟨A⟩1 is precisely the ring of diagonal matrices. So, the general form
of matrix B from the subring ⟨A⟩1 is

B =

[
a

b

]
,where a and b are arbitrary from GF (p). (4.3)

Obviously, if a = b such a matrix will generate a subring of type (A). Matrix B is a generator
of the subring ⟨A⟩1 if and only if the minimal polynomial of B is of the same degree as the degree
of the minimal polynomial of A and this is 2. From (4.3) we see that the degree of minimal
polynomial of B will be 2 if and only if a and b are different. So, the number of generators of
⟨A⟩1 is p(p− 1), and these matrices will be compressed into one point in Λ1(M2(GF (p))).

Using Proposition 4.3 we will now calculate |V(B)|. Let us prove that the assumption of the
proposition is fulfilled. Let Y be a arbitrary matrix of type (B). This means that there exists
an invertible matrix S such that

SY S−1 =

[
λ̂

µ̂

]
= Â

By equation (4.3) we know that the subring ⟨Â⟩1 = ⟨A⟩1. Hence,

⟨Y ⟩1 = ⟨S−1ÂS⟩1 = S−1⟨Â⟩1S = S−1⟨A⟩1S = ⟨S−1AS⟩1,

i.e.,
S−1AS ∈ ⟨Y ⟩1 ∩ O(A).

This proves that O(A) intersects every vertex of type (B).
As matrix A is non-derogatory we know from Theorem 2.12 that

C (A) = ⟨A⟩1 =
{[

a
b

]
: a, b ∈ GF (p)

}
. (4.4)

A matrix from C (A) is invertible if and only if a ̸= 0 and b ̸= 0. So,

|C (A) ∩GL2(GF (p))| = (p− 1)2. (4.5)

To compute ωA let M ∈ ⟨A⟩1 ∩ O(A). From (4.3) we know that

M =

[
a

b

]
,

and since M is similar to A, we get {a, b} = {λ, µ}. This means that (a, b) is a permutation of
(λ, µ). Hence,

ωA = |⟨A⟩1 ∩ O(A)| = 2! = 2.
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By the Proposition 4.3 we conclude that the number of vertices obtained from matrices of type
(B) is equal to

|V(B)| =
|O(A)|
ωA

=
|GL2(GF (p))|

|C (A) ∩GL2(GF (p))| · ωA

=
(p2 − 1)(p2 − p)

(p− 1)2 · 2
=

1

2
(p+ 1)p. (4.6)

Case (C): Non-diagonalizable matrices with a double eigenvalue λ ∈ GF (p), i.e., similar
to

A =

[
λ 1
0 λ

]
.

From the Jordan form we can see that

mA(x) = pA(x), (4.7)

which means that
dim⟨A⟩1 = deg(mA) = 2.

We will use this fact to find general form of an element of the subring ⟨A⟩1.
Namely,

⟨A⟩1 = Lin{I, A} = Lin{I, A− λI} = Lin{I, E1,2}.

As matrices I and E1,2 are linearly independent, they form a basis of the subring ⟨A⟩1, so we
have

⟨A⟩1 =

{[
a b

a

]
: a, b ∈ GF (p)

}
. (4.8)

Next, we find the generators of ⟨A⟩1. Let B ∈ ⟨A⟩1 be arbitrary. Obviously, B = [ a b
a ] and

⟨B⟩1 ⊆ ⟨A⟩1. Taking into account that ⟨B⟩1 = ⟨B − aI⟩1 we have

⟨B⟩1 = Lin{I, B − aI} = Lin

{
I,

[
0 b

0

]}
.

So, B will be a generator of ⟨A⟩1 if and only if b ̸= 0. We conclude that out of p2 elements of
⟨A⟩1 there are p(p− 1) generators of ⟨A⟩1.

As in case (B), we now show that the condition of Proposition 4.3 is fulfilled. Let Y be an
arbitrary maatrix of type (C). This means that there exists an invertible matrix S such that

SY S−1 =

[
λ̂ 1

0 λ̂

]
= Â.

Using equation (4.8) we have ⟨A⟩1 = ⟨Â⟩1, hence

⟨Y ⟩1 = ⟨S−1ÂS⟩1 = S−1⟨Â⟩1S = S−1⟨A⟩1S = ⟨S−1AS⟩1.
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Obviously, this implies that O(A) intersects subring ⟨Y ⟩1, which means that condition of Propo-
sition 4.3 is fulfilled.

From (4.7) we see that matrix A is non-derogatory, which means that

C (A) = ⟨A⟩1.

A matrix from C (A) is invertible if and only if a ̸= 0. So,

|C (A) ∩GL2(GF (p))| = (p− 1) · p = (p− 1)p. (4.9)

Next, we compute ωA. Let M ∈ ⟨A⟩1 ∩ O(A). From (4.8) we know that

M =

[
a b

a

]
.

Since M is similar to A we get a = λ and M has the same degree of minimal polynomial as A,
which is equivalent to b ̸= 0. Combining the two conditions, we get

ωA = |⟨A⟩1 ∩ O(A)| = 1 · (p− 1) = (p− 1).

By Proposition 4.3 we obtain that the number of vertices of type (C) is equal to

|V(C)| =
|O(A)|
ωA

=
|GL3(GF (p))|

|C (A) ∩GL3(GF (p))| · ωA

=
(p2 − 1)(p2 − p)

(p− 1)p · (p− 1)
= p+ 1. (4.10)

Case (D): Matrices with no eigenvalues in the field GF (p), i.e., matrices whose charac-
teristic polynomial is irreducible over GF (p). Such matrices have two different eigenvalues in
algebraic closure of GF (p).

Let q ∈ GF (p)[x] be a monic irreducible polynomial of degree 2 and write it in the form

q(x) = x2 + a1x+ a0. (4.11)

Obviously, a0 ̸= 0, otherwise it can be factorized as x(x+a1). For polynomial q we can construct
its companion matrix as

A =

[
0 −a0
1 −a1

]
. (4.12)

For this matrix the characteristic polynomial is exactly pA = q. Note that any matrix with
characteristic polynomial pA is similar to the matrix A.

From Theorem 2.8 we infer
mA(x) = pA(x), (4.13)

i.e., all matrices of the case (D) are non-derogatory. This means that

C (A) = ⟨A⟩1. (4.14)
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Obviously, mA is an irreducible polynomial, so it follows from [26, Theorem 4.5.11] that the ideal
(mA(x)) is a maximal ideal of GF (p)[x]. By Theorem 4.4.2 from the same book the quotient
ring GF (p)[x]/(mA(x)) is a field.

Define the mapping
φ : GF (p)[x] 7→ ⟨A⟩1,

by
φ(s) = s(A).

Then φ is a ring homomorphism and

Kerφ = (mA(x)) = mA(x) ·GF (p)[x].

Homomorphism φ is obviously surjective so the first isomorphism theorem implies

⟨A⟩1 ∼= GF (p)[x]/(mA(x)). (4.15)

Combining (4.14) and (4.15) we conclude that C (A) is a field, so we easily detect invertible
elements in C (A) as a non-zero matrices, i.e.,

|C (A) ∩GL2(GF (p))| = p2 − 1.

As dim⟨A⟩1 = deg(mA) = 2, we see that the cardinality of the subring ⟨A⟩1 is p2 as well as the
field on the right side. So,

⟨A⟩1 ∼= GF (p2).

The only subfield of GF (p2), and hence the only subring of ⟨A⟩1, is isomorphic to GF (p).
So, the number of generators of ⟨A⟩1 is p2 − p.

In this case we will not rely on Proposition 4.3 but we will calculate the number of vertices
in a different way. First, we calculate the size of the orbit O(A). By Proposition 2.23 we have

|O(A)| = |GL2(GF (p))|
|C (A) ∩GL2(GF (p))|

=
(p2 − 1)(p2 − p)

p2 − 1
= p2 − p.

From the above we see that orbit of every matrix of type (D) contains companion matrix of
an irreducible polynomial. We claim that it contains exactly one companion matrix. To prove
it, suppose C1 and C2 are companion matrices of two monic irreducible polynomials p1 and p2
of degree 2, in the same orbit. As C1 and C2 are from the same orbit, they are similar, so
they have the same characteristic polynomial, i.e., p1 = pC1 = pC2 = p2. This is equivalent to
C1 = C2, which proves our claim.

We conclude that the number of orbits of matrices of type (D) is equal to the number
of monic irreducible polynomials of degree 2, which is equal to p2−p

2
, see [33, Theorem 3.25].

Hence, the number of matrices of type (D) is equal to

p2 − p

2
· |O(A)| = p2 − p

2
· (p2 − p) =

(p2 − p)2

2
.
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If we divide this number by the number of generators of the subring of type (D), calculated
above, we get the number of vertices of type (D), i.e.,

|V(D)| =
(p2 − p)2

2(p2 − p)
=

1

2
(p2 − p). (4.16)

Although we do not need ωA, as in previous cases, we calculate it anyway. Let B be the
matrix from the subring ⟨A⟩1 similar to A. Matrices are similar if and only if there exists
an invertible matrix S such that B = SAS−1. In this case the conjugation π : ⟨A⟩1 7→ ⟨A⟩1
defined as π(X) = SXS−1 is a field isomorphism with π(A) = B. On the other hand, if ϕ
is an automorphism of ⟨A⟩1 then ϕ(A) has the same minimal polynomial as A. Since mA is
irreducible, this means that ϕ(A) is similar to A. Hence,

ωA =
∣∣{ϕ(A) : ϕ ∈ Aut(⟨A⟩1)

}∣∣ = ∣∣Aut(GF (p2))
∣∣.

From [33, Theorem 2.21] we see that ωA = 2. Note that the cardinality of the set of generators
of a subring of type (D) is equal to the product of the number of orbits and ωA, i.e, p2 − p =
p2−p
2

· 2, which proves that every subring of type (D) intersects every orbit. This means that
the assumption of the Proposition 4.3 actually holds for case (D) as well.

In the Table 4.1 we summarize the results from cases (A) – (D), to have a global overview
of the compression.

Table 4.1: Vertices of Λ1(M2(GF (p))).
CASE Number of vertices Number of matrices compressed dim⟨A⟩1
(A) 1 p 1

(B)
1

2
(p+ 1)p p(p− 1) 2

(C) p+ 1 p(p− 1) 2

(D)
1

2
(p2 − p) p2 − p 2

Note that now we can do a quick check if the numbers in Table 4.1 are correct. We first
calculate the number of matrices of each type and the sum of all those numbers should be
equal to the number of all matrices, which is p4. The number of matrices for each case is the
product of the number of vertices and the number of matrices compressed into one vertex. We
have p matrices of type (A), 1

2
p4 − 1

2
p2 matrices of type (B), p3 − p matrices of type (C) and

1
2
p4 − p3 + 1

2
p2 matrices of type (D). The sum of this numbers is exactly p4.

Before we prove an important proposition, which will help us finish the construction of
Λ1(M2(GF (p))) recall from graph theory that we denote by Kn the complete graph on n
vertices without any loops and by K◦

n the complete graph on n vertices with all the loops.
If G and H are two graphs we denote by G ∪ H their disjoint union, by tG a union of t
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copies of G and by G ∨ H their join, i.e. the graph with V (G ∨ H) = V (G) ∪ V (H) and
E(G ∨H) = E(G) ∪ E(H) ∪ {{a, b} | a ∈ V (G), b ∈ V (H)}.

Proposition 4.4. Let n be an arbitrary positive integer. Suppose u and v are two vertices which
correspond to two non-derogatory matrices A and B from Mn(GF (p)), respectively. There
exists an edge between u and v if and only if u = v, i. e., the edge is a loop.

Proof. If there is an edge between u and v, that means that AB = BA. Since A is non-
derogatory it holds that ⟨A⟩1 = C (A). Since B commutes with A, it follows that B belongs to
⟨A⟩1, so ⟨B⟩1 ⊆ ⟨A⟩1. Similarly, ⟨A⟩1 ⊆ ⟨B⟩1, so we have ⟨B⟩1 = ⟨A⟩1 which means u = v. □

Note that all vertices of the compressed commuting graph of M2(GF (p)), except the one
created by compression of the subring of scalar matrices, are represented by non-derogatory
matrices. From Proposition 4.4 we conclude that there are no edges between vertices of type
(B), (C) and (D) except loops and that the vertex created by compression of the subring of
scalar matrices is connected by an edge with itself and with all the other 1

2
(p+ 1)p vertices of

type (B), p+1 vertices of type (C) and 1
2
(p2−1) vertices of type (D). This proves the following

theorem.

Theorem 4.5. Let p be a prime number. Then the unital compressed commuting graph of the
ring M2(GF (p)) is a star graph with p2 + p+ 1 leaves and all the loops, i.e.,

Λ1(M2(GF (p))) ∼= K◦
1 ∨ ((p2 + p+ 1)K◦

1). (4.17)

We remark that Theorem 4.5 is a special case of the following more general theorem, proved
in [13, Theorem 21], which describes the unital compressed commuting graph of a ring of
matrices of order 2 over a general finite field. Here d(n) is the number of all positive divisors
of a positive integer n and σ(n) is the sum of all positive divisors of n.

Theorem 4.6. Let n be an integer, p a prime, and GF (pn) the field with pn elements. Let

a(n) =

{
d(n)2 − d(n) + σ(n)− 1; if p = 2 and n is even,
d(n)2 − d(n) + σ(n); if p > 2 or n is odd,

b(n) =
∑
d|n

pn − 1

pd − 1
, and c(n) = d(2n)− d(n).

Then the unital compressed commuting graph of the ring M2(GF (pn)) is

Λ1(M2(GF (pn))) ∼= K◦
d(n) ∨

(
p2n+pn

2
K◦

a(n) ∪ (pn + 1)K◦
b(n) ∪

p2n−pn

2
K◦

c(n)

)
.

Note that in our case n = 1, so a(1) = b(1) = c(1) = d(1) = 1 and

p2 + p

2
+ (p+ 1) +

p2 − p

2
= p2 + p+ 1.
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Chapter 5

Vertex set of Λ1(M3(GF (p)))

Similarly as in the case of 2×2 matrices the problem of describing the vertices of Λ1(M3(GF (p)))
will be divided into the several cases depending on how the characteristic polynomial of a matrix
splits over the field GF (p).

Case (A): Diagonalizable matrices with a triple eigenvalue λ ∈ GF (p), i.e., similar to

A =

λ λ
λ

 .

Case (B): Diagonalizable matrices with two different eigenvalues λ, µ ∈ GF (p), i.e., similar to

A =

λ µ
µ

 .

Case (C): Diagonalizable matrices with three different eigenvalues λ, µ, ν ∈ GF (p), i.e., similar
to

A =

λ µ
ν

 .

Further cases consist of non-diagonalizable matrices.
Case (D): Matrices with a triple eigenvalue λ ∈ GF (p) with minimal polynomial (x−λ)3, i.e.,
similar to

A =

λ 1
λ 1

λ

 .

Case (E): Matrices with a triple eigenvalue λ ∈ GF (p) with minimal polynomial (x−λ)2, i.e.,
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similar to

A =

λ 1
λ

λ

 .

Case (F): Matrices with two different eigenvalues λ, µ ∈ GF (p) with minimal polynomial
(x− λ)2(x− µ), i.e., similar to

A =

λ 1
λ

µ

 .

Case (G): Matrices whose characteristic polynomial is irreducible over GF (p), i.e., with no
eigenvalues in the field GF (p).
Case (H): Matrices whose characteristic polynomial is of the form p(x) = (x−λ)(x2+a1x+a0)
where the second factor is irreducible over GF (p).

Proposition 5.1. Suppose A and B are two matrices from M3(GF (p)). If ⟨A⟩1 = ⟨B⟩1 then
A and B are of the same type.

Proof. First note that degmA = degmB. We denote this degree by d. As ⟨A⟩1 = ⟨B⟩1 we know
that there exist polynomials q and r such that B = q(A) and A = r(B). This implies that
matrices A and B have the same number of distinct eigenvalues in GF (p). We will denote this
number by e. Note that 0 ≤ e ≤ d ≤ 3. Now, we consider the cases based on the values of d
and e.

Note that the pair (d, e) = (1, 0) is not possible as linear polynomial always has a zero in
the field, i.e., if d = 1 then e = 1. Furthermore, the pair (d, e) = (2, 0) is not possible because
it would mean that the characteristic polynomial has a double zero λ1. Since this is a zero of
minimal polynomial it is an element of GF (p2) \ GF (p). But then the second zero λ2 of the
minimal polynomial must be double as well, which is not possible.

If (d, e) = (1, 1) then matrices A and B are of type (A). Similarly, if (d, e) = (2, 1) they
are of type (E), if (d, e) = (2, 2) they are of type (B), if (d, e) = (3, 0) they are of type (G), if
(d, e) = (3, 2) they are of type (F), if (d, e) = (3, 3) they are of type (C). Finally, if (d, e) = (3, 1)
we distinguish two subcases. If matrix A has all eigenvalues in GF (p) then so does B because
B = q(A). In this case both matrices are of type (D). On the other hand, if A has an eigenvalue
α /∈ GF (p) then so does B, because α = r(β) for some eigenvalue β of B and clearly β /∈ GF (p).
So, both matrices are of type (H). □

Now, as a first step in the description of the compressed commuting graph of the ring
M3(GF (p)) we will calculate the number of vertices of the compressed commuting graph for
each case separately. Note that from Proposition 5.1 we know that compression is possible only
within the certain type.
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Case (A): Diagonalizable matrices with a triple eigenvalue λ ∈ GF (p), i.e., similar to

A =

λ 0 0
0 λ 0
0 0 λ

 .

The minimal polynomial of matrix A is mA(x) = x− λ, which means that ⟨A⟩1 = Lin{I},
i.e., the subring ⟨A⟩1 consists only of p scalar matrices. Every scalar matrix from the subring is
a generator of the subring. In other words all the matrices from the subring will be compressed
to one vertex in Λ1(M3(GF (p))).

Let B be a matrix from M3(GF (p)) similar to A = λI. This means that there exists an
invertible matrix S such that

B = S−1 · A · S = S−1 · λI · S = λS−1 · I · S = λS−1 · S = λI = A.

So, there are no matrices similar to A = αI apart from A itself, and the subring ⟨A⟩1 is unique
subring of type (A), hence, in the Λ1(M3(GF (p))) there is only one vertex of type (A), i.e.,

|V(A)| = 1.

Case (B): Diagonalizable matrices with two different eigenvalues λ, µ ∈ GF (p), i.e., similar
to

A =

λ µ
µ

 .

The minimal polynomial of matrix A is mA(x) = (x−λ)(x−µ), which is of degree 2, so we
know that dim⟨A⟩1 = 2. This fact can be used to find the general form of an element from the
subring ⟨A⟩1. Namely,

⟨A⟩1 = {p(A) : p ∈ Z[x]} = {p(A) : p ∈ GF (p)[x]}
= Lin{I, A} = Lin{I, A− µI}
= Lin{I, (λ− µ)E11} = Lin{E11, E22 + E33}

=

{α β
β

 : α, β ∈ GF (p)

}
. (5.1)

Now we calculate the number of generators of ⟨A⟩1. Let a matrix B ∈ ⟨A⟩1 be arbitrary. Note
that B is a generator if and only if its minimal polynomial is of degree equal to the degree of
the minimal polynomial of matrix A, which is equal to 2. As the general form of B is visible
from (5.1), B is a generator if and only if β ̸= α. So, the number of generators of ⟨A⟩1 is
p(p − 1). These matrices will be compressed into one vertex in the Λ1(M3(GF (p))). On the
other hand, if β = α then ⟨B⟩1 is the ring of scalar matrices, which is the only proper subring
of ⟨A⟩1 and was discussed in case (A).
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To calculate the cardinality of V(B) we will use the same strategy that was used in the case
of matrices of order 2, so we first show that the assumption of Proposition 4.3 is satisfied. Let
Y be an arbitrary matrix of type (B). This means that there exists an invertible matrix S such
that

SY S−1 =

λ̂ µ̂
µ̂

 = Â

By equation (5.1) we know that the subring ⟨Â⟩1 = ⟨A⟩1. Hence,

⟨Y ⟩1 = ⟨S−1ÂS⟩1 = S−1⟨Â⟩1S = S−1⟨A⟩1S = ⟨S−1AS⟩1, (5.2)

i.e.,
S−1AS ∈ ⟨Y ⟩1 ∩ O(A).

So the assumption is satisfied.
Next, we determine the centralizer C (A). A matrix X =

[
a b c
d e f
g h i

]
is in C (A) if and only ifa b c

d e f
g h i

 ·

λ µ
µ

 =

λ µ
µ

 ·

a b c
d e f
g h i

 ,

aλ bµ cµ
dλ eµ fµ
gλ hµ iµ

 =

λa λb λc
µd µe µf
µg µh µi

 .

This matrix equation is equivalent to the system of equations (over the field GF (p))
bµ = λb,
cµ = λc,
dλ = µd,
gλ = µg.

Taking into account that µ ̸= λ, the solution is b = c = d = g = 0 while a, e, f, h, i are arbitrary
elements of the field GF (p). So, the centralizer of the matrix A is

C (A) =

{a e f
h i

 : a, e, f, h, i ∈ GF (p)

}
. (5.3)

From Proposition 2.21 we know that |GL3(GF (p))| = (p3 − 1) · (p3 − p) · (p3 − p2). Now we will
calculate the number of invertible matrices in the centralizer of A. Matrix

[
a

e f
h i

]
is invertible

if and only if a ̸= 0 and matrix
[
e f
h i

]
is invertible, hence

|C (A) ∩GL3(GF (p))| = |GL1(GF (p))| · |GL2(GF (p))| = (p− 1)(p2 − 1)(p2 − p). (5.4)
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We will now prove that we have ωA = 1. Let M ∈ ⟨A⟩1 ∩ O(A) be arbitrary. As M ∈ ⟨A⟩1
we infer from the equation (5.1) that M =

[ α
β

β

]
for some α, β ∈ GF (p). Since M ∈ O(A), it

must have the same eigenvalues with the same algebraic multiplicities as matrix A. So α = λ
and β = µ, i.e., M = A, which proves our claim. By Proposition 4.3 the number of vertices of
type (B) is

|V(B)| =
|O(A)|
ωA

=
|GL3(GF (p))|

|C (A) ∩GL3(GF (p))| · ωA

=
(p3 − 1)(p3 − p)(p3 − p2)

(p− 1)(p2 − 1)(p2 − p) · 1
= (p2 + p+ 1)p2.

Case (C): Diagonalizable matrices with three different eigenvalues λ, µ, ν ∈ GF (p), i.e.,
similar to

A =

λ 0 0
0 µ 0
0 0 ν

 .

Note that in this case p must be greater then or equal to 3 because if p = 2 a matrix cannot
have three different eigenvalues in GF (p).

From the Jordan canonical form we see that mA = pA, i.e., all the matrices from this case are
non-derogatory. This means that matrix A generates subring of dimension 3. As every matrix
in subring ⟨A⟩1 is clearly diagonal, and the space of all diagonal matrices is of the dimension
3, the ring ⟨A⟩1 is precisely the ring of diagonal matrices. So, the general form of the matrix
B from the subring ⟨A⟩1 is

B =

a b
c

 ,where a, b and c are arbitrary from GF (p). (5.5)

Obviously, if a = b = c such a matrix generates subring of type (A). If b = c ̸= a, a = b ̸= c
or a = c ̸= b matrix B generates a subring of type (B). The matrix B ∈ ⟨A⟩1 is a generator
of subring ⟨A⟩1 if and only if the minimal polynomial of B is of degree the same as degree of
minimal polynomial of A and this is 3. From (5.5) we see that degree of minimal polynomial
will be 3 if and only if a, b and c are different. So, the number of generators is p(p− 1)(p− 2).
These matrices will be compressed into one vertex in the Λ1(M3(GF (p))).

Note that subring from equation (5.5) does not depend on the exact values of λ, µ and ν. This
implies that we can use the same argument as in case (B) (see equation (5.2)) and conclude
that the orbit of A intersects every vertex of type (C). This means that the assumption of
Proposition 4.3 is satisfied.

As matrix A is non-derogatory we know that

C (A) = ⟨A⟩1 =

{a b
c

 : a, b, c ∈ GF (p)

}
. (5.6)
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Matrix from C (A) is invertible if and only if a ̸= 0, b ̸= 0 and c ̸= 0. So,

|C (A) ∩GL3(GF (p))| = (p− 1)3. (5.7)

Note that the subring from equation (5.5) is independent of the specific values of λ, µ and
ν. Hence, we can use similar arguments as in case (B) to conclude that O(A) intersects any
vertex of type (C). So, again it is sufficient to consider O(A) to find the number of vertices of
type (C).

Let M ∈ ⟨A⟩1 ∩ O(A). From (5.5) we know that

M =

a b
c


and since M is similar to A we get {a, b, c} = {λ, µ, ν}. This means that (a, b, c) is a permutation
of (λ, µ, ν). Hence,

ωA = |⟨A⟩1 ∩ O(A)| = 3! = 6.

By Proposition 4.3 we conclude that the number of vertices of type (C) is equal to

|V(C)| =
|O(A)|
ωA

=
|GL3(GF (p))|

|C (A) ∩GL3(GF (p))| · ωA

=
(p3 − 1)(p3 − p)(p3 − p2)

(p− 1)3 · 6

=
1

6
(p2 + p+ 1)p3(p+ 1).

(5.8)

Case (D): Matrices with a triple eigenvalue λ ∈ GF (p) with minimal polynomial (x− λ)3,
i.e., similar to

A =

λ 1
λ 1

λ

 .

From the Jordan form we can see that

mA(x) = pA(x) (5.9)

which means that
dim⟨A⟩1 = deg(mA) = 3.

We use this fact to find the general form of an element of the subring ⟨A⟩1. Namely,

⟨A⟩1 = Lin{I, A,A2}
= Lin{I, A− λI,A2 − λ2I}
= Lin{I, E1,2 + E2,3, A

2 − λ2I − 2λ(E1,2 + E2,3)}
= Lin{I, E1,2 + E2,3, E1,3}
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As these matrices are linearly independent, they form a basis of the subring, so we have

⟨A⟩1 =

{a b c
a b

a

 : a, b, c ∈ GF (p)

}
. (5.10)

Now we determine elements of the subring ⟨A⟩1 which are generators. Suppose a matrix B ∈
⟨A⟩1 is arbitrary. Obviously, B =

[
a b c
a b
a

]
and ⟨B⟩1 ⊆ ⟨A⟩1. Taking into account that

⟨B⟩1 = ⟨B − aI⟩1

we have

⟨B⟩1 = Lin{I, B − aI, (B − aI)2}

= Lin

{
I,

0 b c
0 b

0

 ,

0 0 b2

0 0
0

}

So, B is a generator of ⟨A⟩1 if and only if b ̸= 0. We conclude that out of p3 elements of ⟨A⟩1
there are p(p− 1)p = p2(p− 1) generators of ⟨A⟩1. If b = 0 then we have two possibilities:

(i) c = 0, in which case ⟨B⟩1 is of dimension 1 or

(ii) c ̸= 0, in which ⟨B⟩1 is of dimension 2.

Once again the subring from (5.10) does not depend on the value of λ, so, as in previous
cases, the assumption of Proposition 4.3 is fulfilled. From (5.9) we see that matrix A is non-
derogatory, which means that

C (A) = ⟨A⟩1. (5.11)

Matrix from C (A) is invertible if and only if a ̸= 0. So,

|C (A) ∩GL3(GF (p))| = (p− 1) · p · p = (p− 1)p2. (5.12)

Let M ∈ ⟨A⟩1 ∩ O(A). From (5.10) we know that

M =

a b c
a b

a

 .

Since M is similar to A we get a = λ and M has the same degree of minimal polynomial as A,
which is equivalent to b ̸= 0. Note that, as soon as a = λ and b ̸= 0, matrix M has minimal
polynomial of degree 3 equal to the minimal polynomial of A, hence, M is automatically similar
to A. Combining the two conditions, we get

ωA = |⟨A⟩1 ∩ O(A)| = 1 · (p− 1) · p = (p− 1)p.
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We finish the case by counting the number of vertices of type (D), using Proposition 4.3.
We get

|V(D)| =
|O(A)|
ωA

=
|GL3(GF (p))|

|C (A) ∩GL3(GF (p))| · ωA

=
(p3 − 1)(p3 − p)(p3 − p2)

(p− 1)p2 · (p− 1)p

= (p3 − 1)(p+ 1).

(5.13)

Case (E): Matrices with a triple eigenvalue λ ∈ GF (p) with minimal polynomial (x− λ)2,
i.e., similar to

A =

λ 1
λ

λ

 .

From the Jordan form we can see that pA(x) = (x− λ)3 and mA(x) = (x− λ)2 which gives
us dim⟨A⟩1 = deg(mA) = 2. So,

⟨A⟩1 = ⟨A− λI⟩1 = Lin{I, A− λI} = Lin{I, E1,2}.

This calculation gives us

⟨A⟩1 =

{a b
a

a

 : a, b ∈ GF (p)

}
. (5.14)

Next, we calculate the number of generators of ⟨A⟩1. Let a matrix B ∈ ⟨A⟩1 be arbitrary. Note
that B is a generator if and only if its minimal polynomial is of degree 2. As general form of B
is visible from (5.14), B will be a generator if and only if b ̸= 0. So, the number of generators
of ⟨A⟩1 is p(p− 1). On the other hand, if b = 0 then ⟨B⟩1 is the ring of scalar matrices, which
is the only proper subring of ⟨A⟩1.

Note that again the subring from (5.14) does not depend on the specific value of λ, so the
assumption of Proposition 4.3 is satisfied. We now calculate C (A), the centralizer of matrix A.
Knowing that

C (A) = C (A− λI),

let X =
[
a b c
d e f
g h i

]
∈ C (A− λI) be arbitrary. We have

a b c
d e f
g h i

 ·

0 1 0
0 0 0
0 0 0

 =

0 1 0
0 0 0
0 0 0

 ·

a b c
d e f
g h i


0 a 0
0 d 0
0 g 0

 =

d e f
0 0 0
0 0 0

 ,
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which is equivalent to 
d = 0,
a = e,
f = 0,
g = 0,

i.e., X =

a b c
0 a 0
0 h i

 . So,

C (A) =

{a b c
0 a 0
0 h i

 : a, b, c, h, i ∈ GF (p)

}
. (5.15)

We proceed similarly as in previous cases. A matrix from C (A) is invertible if and only if a ̸= 0
and i ̸= 0. So, ∣∣C (A) ∩GL3(GF (p))

∣∣ = (p− 1) · p · p · p · (p− 1) = (p− 1)2p3.

Let M ∈ ⟨A⟩1 ∩ O(A). From (5.14) we know that

M =

a b
a

a


and since M is similar to A, they have the same eigenvalue, i.e., a = λ, and the same degree of
minimal polynomial, so b ̸= 0. Therefore,

ωA = |⟨A⟩1 ∩ O(A)| = 1 · (p− 1) = p− 1.

We conclude by Proposition 4.3 that the number of vertices of type (E) is equal to

|V(E)| : =
|O(A)|
ωA

=
|GL3(GF (p))|

|C (A) ∩GL3(GF (p))| · ωA

=
(p3 − 1)(p3 − p)(p3 − p2)

(p− 1)2p3 · (p− 1)

= (p2 + p+ 1)(p+ 1).

(5.16)

Case (F): Matrices with two different eigenvalues λ, µ ∈ GF (p) with minimal polynomial
(x− λ)2(x− µ), i.e., similar to

A =

λ 1
λ

µ

 .

From the Jordan canonical form we can see that

mA(x) = pA(x), (5.17)
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which gives us dim⟨A⟩1 = deg(mA) = 3. Knowing the dimension, it is easy to find the form of
a general element of the subring

⟨A⟩1 = ⟨A− λI⟩1 = Lin{I, A− λI, (A− λI)2}

= Lin
{
I,

0 1
0

µ− λ

 ,

0 1
0

µ− λ

2 }

= Lin
{
I,

0 1
0

µ− λ

 ,

0 0
0

(µ− λ)2

}

= Lin
{
I,

0 1
0

µ− λ

 , E3,3

}

= Lin
{
I − E3,3,

0 1
0

µ− λ

− (µ− λ)E3,3, E3,3

}
= Lin{E1,1 + E2,2, E1,2, E3,3}

As the generating matrices are linearly independent, they form a basis of the subring ⟨A⟩1, so

⟨A⟩1 =

{a c
a

b

 : a, b, c ∈ GF (p)

}
. (5.18)

We now determine the generators of ⟨A⟩1. Let a matrix B from ⟨A⟩1 be arbitrary. Note that
if c = 0 and b = a then B generates a subring of type (A); if c = 0 and b ̸= a then B generates
a subring of type (B) and if c ̸= 0 and a = b then B generates a subring of type (D). For all
other matrices in ⟨A⟩1 we have that c ̸= 0 and b ̸= a so the degree of their minimal polynomial
is 3, i.e., they are generators of ⟨A⟩1. These two conditions imply that the number of generators
is p · (p− 1) · (p− 1) = p(p− 1)2.

Note that the subring (5.18) does not depend on the specific values of λ and µ, so again
the assumption of Proposition 4.3 is satisfied. From (5.17) we see that the matrix A is non-
derogatory, which means that

C (A) = ⟨A⟩1, (5.19)
and we have the general form of an element from ⟨A⟩1 in (5.18). Matrix from C (A) is invertible
if and only if a ̸= 0 and b ̸= 0. So,

|C (A) ∩GL3(GF (p))| = (p− 1) · (p− 1) · p = (p− 1)2p. (5.20)

Let M ∈ ⟨A⟩1 ∩ O(A). From (5.18) we know that

M =

a c
a

b


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and since M is similar to A they have both eigenvalues equal, i.e., a = λ and b = µ, and they
have the same degree of the minimal polynomial, so c ̸= 0. Therefore,

ωA = |⟨A⟩1 ∩ O(A)| = 1 · 1 · (p− 1) = p− 1.

By Proposition 4.3 we conclude that the number of vertices of type (F) is equal to

|V(F )| =
|O(A)|
ωA

=
|GL3(GF (p))|

|C (A) ∩GL3(GF (p))| · ωA

=
(p3 − 1)(p3 − p)(p3 − p2)

(p− 1)2p · (p− 1)

= (p2 + p+ 1)p2(p+ 1).

(5.21)

Case (G): Matrices whose characteristic polynomial is irreducible over GF (p), i.e., with
no eigenvalues in the field GF (p).

Let q be a monic irreducible polynomial of degree 3 from GF (p)[x] and write it in the form

q(x) = x3 + a2x
2 + a1x+ a0. (5.22)

Obviously, a0 ̸= 0, otherwise it can be factorised as x(x2 + a2x+ a1). For polynomial q we can
construct its companion matrix as

A =

0 −a0
1 0 −a1

1 −a2

 . (5.23)

For this matrix the characteristic polynomial is exactly pA = q. Note that any matrix with
characteristic polynomial pA is similar to the matrix A, i.e., orbit of every matrix of type (G)
contains at least one companion matrix. From Theorem 2.8 we have

mA(x) = pA(x), (5.24)

i.e., all matrices of the case (G) are non-derogatory. This means that

C (A) = ⟨A⟩1. (5.25)

As mA is an irreducible polynomial, it follows from [26, Theorem 4.5.11] that the ideal (mA(x))
is a maximal ideal of GF (p)[x]. By Theorem 4.4.2 from the same book the quotient ring
GF (p)[x]/(mA(x)) is a field. Define the mapping

φ : GF (p)[x] 7→ ⟨A⟩1,

by
φ(q) = q(A).

Then the mapping φ is a ring homomorphism and

Kerφ = (mA(x)) = mA(x) ·GF (p)[x].
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Homomorphism φ is obviously surjective so the first isomorphism theorem implies

⟨A⟩1 ∼= GF (p)[x]/(mA(x)). (5.26)

As dim⟨A⟩1 = deg(mA) = 3, we see that the cardinality of the subring ⟨A⟩1 is p3. So,

⟨A⟩1 ∼= GF (p3). (5.27)

The only subfield of GF (p3), and hence the only subring of ⟨A⟩1, is isomorphic to GF (p). So,
the number of generators of ⟨A⟩1 is p3−p. Combining (5.25) and (5.26) we conclude that C (A)
is a field, so we easily detect invertible elements in C (A) as non-zero matrices, so that

|C (A) ∩GL3(GF (p))| = p3 − 1. (5.28)

We continue in a slightly different way than in the previous cases because, as it turns out,
the subring generated by the matrix A from equation (5.23) now depends on the choice of
a0, a1 and a2. Instead, we will argue similarly as in the case (D) of 2 × 2 matrices. From
Proposition 2.23 we know that

|O(A)| =
∣∣GL3(GF (p))

∣∣∣∣C (A) ∩GL3(GF (p))
∣∣ = (p3 − 1)(p3 − p)(p3 − p2)

(p3 − 1)
= (p3 − p)(p3 − p2).

From above we know that the orbit of every matrix of type (G) contains a companion matrix
of an irreducible polynomial. In fact, it contains exactly one companion matrix, because if C1

and C2 are companion matrices of two irreducible polynomials degree 3 contained in the same
orbit, then C1 is similar to C2 which implies that pC1 = pC2 and hence C1 = C2. So, the number
of orbits in this case is the same as the number of monic irreducible polynomials of degree 3,
which is equal p3−p

3
by [33, Theorem 3.25]. This means that the number of all matrices of type

(G) is equal to

p3 − p

3
· |O(A)| = p3 − p

3
· (p3 − p)(p3 − p2) =

(p3 − p)(p3 − p)(p3 − p2)

3
.

If we divide this number by the number of generators of a subring of type (G) we get the
number of vertices of type (G)

|V(G)| =
(p3 − p)(p3 − p)(p3 − p2)

3(p3 − p)
=

(p3 − p)(p3 − p2)

3
. (5.29)

Although we do not strictly need ωA = |⟨A⟩1 ∩O(A)| as in the previous cases, lets calculate it
anyway. Let B be the matrix from the subring ⟨A⟩1 such that B is similar to A. The matrices
are similar if and only if there exists an invertible matrix S such that B = SAS−1. In this
case the conjugation π : ⟨A⟩1 7→ ⟨A⟩1 defined as π(X) = SXS−1 is a field automorphism with
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π(A) = B. On the other hand, if ϕ is an automorphism of ⟨A⟩1 then ϕ(A) has the same minimal
polynomial as A. Since mA is irreducible this, means that ϕ(A) is similar to A. Hence,

ωA =
∣∣{ϕ(A) : ϕ ∈ Aut(⟨A⟩1)

}∣∣ = ∣∣Aut(GF (p3))
∣∣.

From [33, Theorem 2.21] we conclude that ωA = 3. Note that the number of generators of a
subring of type (G), which is equal to p3 − p, satisfies equality p3 − p = p3−p

3
· ωA, the product

of the number of orbits and ωA, which implies that every subring of type (G) intersects every
orbit. This means that the assumption of the Proposition 4.3 actually holds in this case.

Case (H): Matrices whose characteristic polynomial is of the form

(x− λ)(x2 + a1x+ a0) (5.30)

where λ, a1 and a0 are from the field GF (p) and p2(x) := x2 + a1x + a0 is irreducible over
GF (p). This means that one eigenvalue is in GF (p) and the other two are not. Such matrices
have three different eigenvalues in the algebraic closure of GF (p).

For every polynomial of type (5.30) we can construct a matrix as a block-diagonal combi-
nation of companion matrices of factors, namely

A =

λ 0 −a0
1 −a1

 =

 λ
0 −a0
1 −a1

 =

[
λ

X

]
. (5.31)

Obviously, matrix A has characteristic polynomial pA(x) = (x−λ)(x2+a1x+a0) from equation
(5.30). According to Theorem 2.8 we have

mA(x) = pA(x). (5.32)

A consequence of the previous point is that each matrix whose characteristic polynomial is
pA(x) is non-derogatory, so it is similar to A, i.e., the orbit of every matrix of type (H) contains
at least one matrix of the form (5.31).

For the matrix A defined in (5.31) consider the subring

⟨A⟩1 = {p(A) : p ∈ Z[x]}.

From (5.32) we know that degmA(x) = 3, so we have

dim⟨A⟩1 = 3. (5.33)

As matrix X defined in (5.31) has characteristic polynomial pX(x) = p2(x) = x2 + a1x + a0,
the Cayley Hamilton theorem implies

X2 + a1X + a0I = 0, (5.34)
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which means that
X2 = −a1X − a0I. (5.35)

Now we use (5.35) to determine the subring ⟨A⟩1, namely

⟨A⟩1 = Lin{I, A,A2}

= Lin
{
I,

[
λ

X

]
,

[
λ2

X2

]}
= Lin

{
I,

[
λ

X

]
,

[
λ2

−a1X − a0I

]}
.

If we replace the third matrix A2 with the linear combination A2 + a1A+ a0I we get

⟨A⟩1 = Lin
{
I,

[
λ

X

]
,

[
λ2 + a1λ+ a0

0

]}
.

On the position (1, 1) of the third matrix we recognize p2(λ) which is a non-zero element of the
field GF (p) as the polynomial p2 is irreducible. This means that the element p2(λ) is invertible,
so we can multiply the third matrix with p2(λ)

−1 and get E1,1. So, we have

⟨A⟩1 = Lin
{
I,

[
λ

X

]
, E1,1

}
.

Now, we replace matrix I with I −E1,1 = E2,2 +E3,3 and matrix A with A−λE1,1 and reorder
them to get

⟨A⟩1 = Lin
{
E1,1, E2,2 + E3,3,

[
0

X

]}
. (5.36)

Now it easy to calculate the number of generators. Let B from ⟨A⟩1 be an arbitrary matrix.
We have

B =

 a
b −ca0
c b− ca1

 (5.37)

where a, b and c are from GF (p). Matrix B is a generator of ⟨A⟩1 if and only if its minimal
polynomial is of degree 3. As we see, matrix B is block-diagonal matrix, so by the Theorem 2.9
the minimal polynomial of matrix B is the least common multiple of the minimal polynomials
of the blocks. Let us concentrate on the lower right block. Obviously, for c = 0 we have a scalar
matrix whose minimal polynomial is of degree 1, so for now we will consider case c ̸= 0. In this
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case, the characteristic polynomial of the lower right block is

pbI+cX(x) = det

[
b− x −ca0
c b− ca1 − x

]
= det

[
−(x− b) −ca0

c −ca1 − (x− b)

]
= c2 · det

[
−(x− b)c−1 −a0

1 −a1 − (x− b)c−1

]
= c2 · pX((x− b)c−1).

As matrix X has characteristic polynomial p2, which is irreducible, for all α from GF (p) it
holds that

pbI+cX(α) = pX((α− b)c−1) ̸= 0,

i.e., the lower right block of matrix B has irreducible characteristic polynomial. So, its minimal
polynomial is irreducible, which means that the minimal polynomial of the matrix B is of degree
3 and B generates ⟨A⟩1. Hence, the number of generators of the subring ⟨A⟩1 is

p · p · (p− 1) = p2(p− 1).

For case c = 0, obviously, we have two cases. If a = b then B is a scalar matrix, a generator of
the subring of type (A), and if a ̸= b then B generates a subring of type (B).

As a consequence of (5.32) matrix A is non-derogatory, so from Theorem 2.12 we have

C (A) = ⟨A⟩1. (5.38)

We proceed similarly as in case (G). A matrix from C (A) is of the form given in (5.37) and is
invertible if and only if ∣∣∣∣∣∣

a
b −ca0
c b− ca1

∣∣∣∣∣∣ = a(b(b− ca1) + c2a0) ̸= 0.

This is equivalent to a ̸= 0 and
b2 − bca1 + c2a0 ̸= 0. (5.39)

As the first case, we consider (5.39) under condition c ̸= 0. When we multiply (5.39) with
c−2 we get (b

c

)2

− a1

(b
c

)
+ a0 ̸= 0(

− b

c

)2

+ a1

(
− b

c

)
+ a0 ̸= 0

p2

(
− b

c

)
̸= 0
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which is true for all b and c ̸= 0 from GF (p) as p2 is an irreducible polynomial. In second case,
when c = 0, we have b2 ̸= 0 so b ̸= 0. Hence, a ̸= 0 and at least one of b and c is non zero. So,∣∣C (A) ∩GL3(GF (p))

∣∣ = (p− 1) · p · (p− 1) + (p− 1) · (p− 1) · 1
= (p− 1)2(p+ 1)

= (p2 − 1)(p− 1).

From Proposition 2.23 we conclude that

|O(A)| =
∣∣GL3(GF (p))

∣∣∣∣C (A) ∩GL3(GF (p))
∣∣ = (p3 − 1)(p3 − p)(p3 − p2)

(p2 − 1)(p− 1)
= (p3 − 1)p3.

We have shown above that the orbit of every matrix of type (H) contains a matrix of the
form (5.31). Similarly as in the case (G) we conclude that it contains exactly one such matrix.
So, the number of orbits in this case is equal to the number of polynomials of type (5.30). To
count the number of such polynomials, note that the number of possible polynomials for the
first factor is p. Every polynomial from the set{

pλ(x) = x− λ : λ ∈ GF (p)
}

is appropriate, i.e., every element from GF (p) can be the eigenvalue from the field. The
number of possible polynomials for the second factor (number of monic irreducible polynomials
of degree 2) is p2−p

2
, because there are p2 monic polynomials and out of them we have p+ p(p−1)

2

reducible polynomials. This means that there are in total p · p2−p
2

different polynomials suitable
to be a characteristic polynomial of matrices from the case (H), hence we obtain also the same
number of orbits. This implies that the number of matrices of type (H) is equal to

p · p
2 − p

2
· |O(A)| = p · p

2 − p

2
· (p3 − 1)p3 =

p5(p− 1)(p3 − 1)

2
.

We obtain the number of vertices of type (H) by dividing the above number by the number of
generators of a subring of type (H) which is equal to p2(p− 1), namely

|V(H)| =
p5(p− 1)(p3 − 1)

2p2(p− 1)
=

p3(p3 − 1)

2
. (5.40)

We also calculate ωA as in the previous case. From equation (5.36) we see that

⟨A⟩1 ∼= GF (p)⊕ ⟨X⟩1.

Similarly as in case (G) we prove that ⟨X⟩1 ∼= GF (p2) so

⟨A⟩1 ∼= GF (p)⊕GF (p2). (5.41)
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Let M ∈ ⟨A⟩1 ∩ O(A). From (5.37) we know that

M =

a b −ca0
c b− ca1

 =

[
a

Z

]

and since M is similar to A they have the same eigenvalue from the field, i.e., a = λ, and
matrix Z has characteristic polynomial p2. So, Z is similar to X, because of the irreducibility
of polynomial p2. Therefore,

ωA = |⟨A⟩1 ∩ O(A)| = ωX = |⟨X⟩1 ∩ O(X)|.

Similarly as in case (G) we conclude ωA = 2. Hence, in this case the number of generators of
a subring of type (H), i.e., p2(p − 1), is equal to product of the number of orbits and ωA, i.e.,
p(p2−p)

2
· 2. This again implies that every subring of type (H) intersects every orbit. Again, it

means that the assumption of the Proposition 4.3 holds for this case, as well.

Now we summarize results from cases (A) to (H) in Table 5.1, to have a global overview of
compression into vertices. We can check if the numbers in Table 5.1 are correct, namely, if we
compute the scalar product of the second and third column of Table 5.1 we obtain p9 which is
exactly the cardinality of M3(GF (p)).

Table 5.1: Vertices of Λ1(M3(GF (p))).
CASE Number of vertices Number of matrices compressed dimGF (p)⟨A⟩1
(A) 1 p 1
(B) (p2 + p+ 1)p2 p(p− 1) 2
(C) 1

6
(p2 + p+ 1)p3(p+ 1) p(p− 1)(p− 2) 3

(D) (p3 − 1)(p+ 1) p2(p− 1) 3
(E) (p2 + p+ 1)(p+ 1) p(p− 1) 2
(F) (p2 + p+ 1)p2(p+ 1) p(p− 1)2 3
(G) 1

3
(p3 − p)(p3 − p2) p3 − p 3

(H) 1
2
(p3 − 1)p3 p2(p− 1) 3
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Chapter 6

Neighborhoods of vertices of
Λ1(M3(GF (p)))

In this chapter we describe the neighborhood of each vertex of Λ1(M3(GF (p))). For a vertex
v of a certain type we will calculate the number of vertices of each type that are connected to
v. This will be done by investigating the centralizer of a matrix representative A of vertex v.
Note that the neighborhood of the vertex v is a compressed commuting graph of the centralizer
C (A). For the vertex v of type (Y ) we will denote by N(X, Y ) the number of neighbors of type
(X).

Suppose A is a matrix representative of a vertex v of certain type. We consider cases with
respect to the type of vertex v.

Case (A): As we know that we have only one vertex of type (A) and the whole subring
of scalar matrices (consists of p scalar matrices) is compressed into that one vertex, a matrix
representative of the vertex v is a scalar matrix. The centralizer of a scalar matrix is the whole
ring M3(GF (p)) so all the other vertices will be in the neighborhood of v, including v itself.
Table 6.1 represents the neighborhood of v of type (A), where the number in row (X) represents
the number of vertices of type (X) in the neighborhood.

Case (B): The centralizer of a matrix A of type (B) is determined in (5.3) as

C (A) =

{a e f
h i

 : a, e, f, h, i ∈ GF (p)

}
.

We will determine the number of neighbors for each type separately.

(A) Obviously, the subring of scalar matrices is inside the centralizer, so the unique vertex of
type (A) is in the neighborhood of vertex v, i.e. N(A,B) = 1.
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Table 6.1: Neighborhood of a vertex v of type (A).
(A)

(A) 1
(B) (p2 + p+ 1)p2

(C) 1
6
(p2 + p+ 1)p3(p+ 1)

(D) (p3 − 1)(p+ 1)
(E) (p2 + p+ 1)(p+ 1)
(F) (p2 + p+ 1)p2(p+ 1)
(G) 1

3
(p3 − p)(p3 − p2)

(H) 1
2
(p3 − 1)p3

(B) Let B be an arbitrary matrix from the centralizer such that B is of type (B), i.e.,

B =

a e f
h i

 similar to

α β
β

 .

where α and β, β ̸= α, are from GF (p). This will happen in two subcases

1) Suppose
[
e f
h i

]
is similar to a scalar matrix, i.e. if it is a scalar matrix, as there are

no matrices similar to scalar out of themselves. This is equivalent to
e = β,
f = 0,
h = 0,
i = β,
a = α.

This implies that for α we have p possibilities, for β one option less, i.e., p−1. For a
chosen eigenvalues we have exactly one matrix of type (B) inside of centralizer C (A).
So, in total we have p(p− 1) · 1 = p(p− 1) matrices of type (B) in this subcase.

2) If
[
e f
h i

]
is a non-scalar, then, in order that B is similar to

[ α
β

β

]
, matrix

[
e f
h i

]
has

to be diagonalizable with two different eigenvalues α and β, and a is either α or β.
From Table 4.1 we know that the number of diagonalisable 2× 2 matrices with two
different eigenvalues, i.e., 2× 2 matrices of type (B), is (p+1)p

2
· p(p− 1), the number

of vertices times the number of matrices compressed into one vertex. For any such
matrix we have 2 options for a. So, we have (p + 1)p · p(p − 1) = p2(p + 1)(p − 1)
matrices of type (B) in this subcase.

In total, we have p(p− 1) + p2(p+ 1)(p− 1) = p(p− 1)(p2 + p+ 1) matrices of type (B)
inside the centralizer C (A).
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If one matrix is in the centralizer, the whole subring generated by that matrix is in the
centralizer, so we divide the previously calculated number of matrices by the number of
generators of a subring of type (B), see second column of Table 5.1, to get the number of
vertices of type (B) which are in the neighborhood of vertex v, i.e.,

N(B,B) =
p(p− 1)(p2 + p+ 1)

p(p− 1)
= p2 + p+ 1.

(C) Let B be an arbitrary matrix from the centralizer C (A) such that B is of type (C) i.e.,

B =

a e f
h i

 is similar to

λ µ
ν

 ,

where λ, µ and ν are three different eigenvalues from the field GF (p). This will be the
case if and only if

[
e f
h i

]
is diagonalisable with two different eigenvalues and a ∈ GF (p)

is different from previously mentioned eigenvalues. From Table 4.1 we know that the
number of diagonalisable 2×2 matrices with two different eigenvalues, i.e., 2×2 matrices
of type (B), is (p+1)p

2
· p(p − 1), the number of vertices of type (B) times the number of

matrices compressed into one vertex. Furthermore, we have p−2 options for a, so in total
we have (p+1)p

2
· p(p− 1) · (p− 2) such 3× 3 matrices. Similarly as in case (B), if we divide

this number by the number of generators of a subring of type (C), see second column of
Table 5.1, we get the number of vertices of type (C) which are in the neighborhood of
vertex v, i.e.,

N(C,B) =
(p+1)p

2
· p(p− 1) · (p− 2)

p(p− 1)(p− 2)
=

p2 + p

2
.

(D) Note that all matrices of type (D) have only one linearly independent eigenvector. Since
the matrices from the centralizer C (A) are block-diagonal, we see that all of them have
at least two linearly independent eigenvectors in the algebraic closure of the field GF (p),
meaning that there are no matrices of type (D) inside the centralizer, i.e., N(D,B) = 0.

(E) From the Table 4.1 we know that the number of 2×2 matrices with one double eigenvalue
and minimal polynomial of degree 2 is (p+1) ·p(p−1), the number of vertices of type (C)
times the number of matrices compressed into one vertex. So, the number of matrices of
type (E) in the centralizer C (A) is (p + 1)p(p − 1) · 1 = (p + 1)p(p − 1) because in case
(E) we have matrices with triple eigenvalue. Finally, we divide the number of matrices
by the number of generators of a subring type (E), which is p(p− 1), to get the number
of vertices of type (E) in the neighborhood of vertex v, i.e.,

N(E,B) =
(p+ 1)p(p− 1)

p(p− 1)
= p+ 1.
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(F) Similarly as in the previous case, we know that the number of matrices of type (F) in the
centralizer is (p+ 1)p(p− 1) · (p− 1) because now we have two different eigenvalues, and
thus p− 1 choices for a. After we divide by the number of generators of a subring of type
(F), which is p(p− 1)2, we get the number of vertices of type (F) in the neighborhood of
vertex v, i.e.,

N(F,B) =
p(p− 1)(p+ 1)(p− 1)

p(p− 1)2
= p+ 1.

(G) As all the matrices from the centralizer have at least one eigenvalue from the field GF (p),
there are no matrices of type (G) in the centralizer, so vertex v has no neighbors of type
(G), i.e., N(G,B) = 0.

(H) Let B be an arbitrary matrix from the centralizer C (A), i.e.,

B =

a e f
h i

 .

Matrix B is of a type (H) if and only if the 2× 2 block is one of the 1
2
(p2 − p) · (p2 − p)

matrices with irreducible characteristic polynomial, see row (D) of the Table 4.1, and a
is an arbitrary element from the field GF (p). So, the number of matrices of type (H)
inside the centralizer is 1

2
(p2 − p)(p2 − p) · p. If we divide this number by the number of

generators of a subring of type (H), which is p2(p − 1), we get the number of vertices of
type (H) in the neighborhood of vertex v, i.e.,

N(H,B) =
1
2
(p2 − p)(p2 − p)p

p2(p− 1)
=

p(p− 1)

2
.

The results of the above calculations are collected in Table 6.2.

Table 6.2: Neighborhood of a vertex v of type (B).
(B)

(A) 1
(B) p2 + p+ 1

(C) p2+p
2

(D) 0
(E) p+ 1
(F) p+ 1
(G) 0
(H) p(p−1)

2
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Case (C): The centralizer of a matrix A of type (C) is determined in (5.6) as

C (A) = ⟨A⟩1 =

{a b
c

 : a, b, c ∈ GF (p)

}
.

(A) While calculating the number of generators of subring type (C) in Chapter 5, we detected
the conditions for a matrix from C (A) = ⟨A⟩1 to generate a subring of dimension 1 or 2,
i.e., when the matrix represents a vertex of type (A) or (B). For the vertex of type (A)
the condition was a = b = c and since we have only one vertex of type (A) we have

N(A,C) = 1.

(B) For the vertex of type (B) the condition was b = c ̸= a, a = b ̸= c or a = c ̸= b. In each
of the three subcases we get one subring and those three subrings are different, so in the
neighborhood of the vertex v we have 3 vertices of type (B), i.e.,

N(B,C) = 3.

(C) According to Proposition 4.4 there is exactly one vertex of type (C) in the neighborhood
of vertex v, namely v itself, i.e.,

N(C,C) = 1.

Since in the C (A) = ⟨A⟩1 all matrices are diagonal, there are no vertices of types (D),
(E), (F), (G) and (H) in the neighborhood of vertex v, i.e.,

N(D,C) = N(E,C) = N(F,C) = N(G,C) = N(H,C) = 0.

The results of the above calculations are collected in Table 6.3.

Table 6.3: Neighborhood of a vertex v of type (C).
(C)

(A) 1
(B) 3
(C) 1
(D) 0
(E) 0
(F) 0
(G) 0
(H) 0
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Case (D): The centralizer of a matrix A of type (D) is determined in (5.11) and (5.10) as

C (A) =

{a b c
a b

a

 : a, b, c ∈ GF (p)

}
.

All matrices from the centralizer have one triple eigenvalue from the field GF (p), i.e., possible
types inside centralizer are (A), (D) and (E) while all other types are not possible. This means
that

N(B,D) = N(C,D) = N(F,D) = N(G,D) = N(H,D) = 0.

(A) While calculating the number of generators of subring type (D) in Chapter 5, we detected
the condition for a matrix from C (A) = ⟨A⟩1 to generate a subring of dimension 1, i.e.,
when the matrix represents a vertex of type (A). It was b = 0 and c = 0 and since we
have only one vertex of type (A) we have

N(A,D) = 1.

(D) According to the Proposition 4.4 there is exactly one vertex of type (D) in the neighbor-
hood of vertex v, namely v itself, i.e.,

N(D,D) = 1.

(E) For the subring of dimension 2 the condition was b = 0 and c ̸= 0. It means that out of
p3 matrices in the centralizer, we have p · 1 · (p− 1) = p(p− 1) matrices that individually
generate a subring of dimension 2. As subring of type (E) has p(p − 1) generators, see
Table 5.1, in the neighborhood of the vertex v we have p(p−1)

p(p−1)
= 1 vertex of type (E). So,

N(E,D) = 1.

The results of the above calculations are collected in Table 6.4.

Case (E): The centralizer of a matrix A of type (E) is determined in (5.15) as

C (A) =

{a b c
0 a 0
0 h i

 : a, b, c, h, i ∈ GF (p)

}
.

A matrix B from the centralizer has eigenvalues a, a and i from the field GF (p), which
means that cases (C), (G) and (H) are not possible, i.e.,

N(C,E) = N(G,E) = N(H,E) = 0.

We consider two possibilities concerning the eigenvalues.
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Table 6.4: Neighborhood of a vertex v of type (D).
(D)

(A) 1
(B) 0
(C) 0
(D) 1
(E) 1
(F) 0
(G) 0
(H) 0

1) If i = a we have a matrix B =
[
a b c
a
h a

]
with triple eigenvalue a from the field GF (p). Now

we look at the number of eigenvectors, in order to detect the types of matrices. We find
eigenvectors for the eigenvalue a by solving the matrix equation (B − aI) · v = 0, which
is equivalent to 0 b c

0
h 0

 ·

xy
z

 =

00
0

 .

It is further equivalent to the system{
by + cz = 0,

hy = 0.
(6.1)

Note that x is a free variable. We will break the system solving into cases and subcases,
as follows.

(a) If h = 0 we have B =
[
a b c
a
a

]
and system (6.1) is equivalent to

by + cz = 0.

(i) If b = 0 and c = 0 then B =
[
a
a
a

]
, i.e., B is a scalar matrix. We have p such

matrices and they are of type (A).

(ii) If b ̸= 0 and c = 0 then B =
[
a b
a
a

]
and system (6.1) is equivalent to

by = 0.

with solution y = 0. Now, we have that z is a free variable so we have two
linearly independent eigenvectors. This means that B is of type (E). There are
p · (p− 1) such a matrices.
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(iii) If b = 0 and c ̸= 0 then B =
[
a c
a
a

]
and system (6.1) is equivalent to

cz = 0 ⇔ z = 0.

Now, y is free variable so we have again two eigenvectors and matrix B is of
type (E). There are p · 1 · (p− 1) · 1 · 1 = p(p− 1) such a matrices.

(iv) If b ̸= 0 and c ̸= 0 then B =
[
a b c
a
a

]
and system (6.1) is equivalent to

z = −by

c
.

Here, y is a free variable, as is x, so we have two linearly independent eigenvectors
which means that matrix B is of type (E). There are p·(p−1)·(p−1) = p(p−1)2

such a matrices.
(b) If h ̸= 0 then B =

[
a b c
a
h a

]
and the system (6.1) is equivalent to{

by + cz = 0,

y = 0,

which is further equivalent to {
cz = 0,

y = 0.

We consider two possibilities with respect to the value of parameter c.

(i) If c = 0 then z is a free variable so we have two linearly independent two
eigenvectors which means that matrix B is of type (E). There are p ·p · (p−1) =
p2(p− 1) such matrices.

(ii) If c ̸= 0 then z = 0 so we have only one linearly independent eigenvector so
matrix B is of type (D). There are p · p · (p − 1) · (p − 1) = p2(p − 1)2 such
matrices.

2) If i ̸= a we have a matrix B =
[
a b c
a
h i

]
with two different eigenvalues. Namely, a of the

algebraic multiplicity 2 and i of the algebraic multiplicity 1. Once again, we will consider
the number of eigenvectors in order to detect the types of matrices. Obviously, eigenvalue
i will have one linearly independent eigenvector, as geometric multiplicity is no greater
than the algebraic multiplicity.

For the eigenvectors with eigenvalue a we have matrix equation (B − aI) · v = 0, which
is equivalent to 0 b c

0
h i− a

 ·

xy
z

 =

00
0

 .
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It is further equivalent to the system{
by + cz = 0,

hy + (i− a)z = 0.
(6.2)

Note that x is a free variable. Now we consider two possible cases.

(a) Eigenvalue a has only one linearly independent eigenvector. This is the case if and
only if the system (6.2) has only the trivial solution, as it is homogeneous. This
holds if and only if ∣∣∣∣b c

h i− a

∣∣∣∣ ̸= 0,

which is equivalent to b ̸= ch
i−a

. So, in this case matrix B has two linearly independent
eigenvectors and is of type (F). The number of such matrices B is p · (p− 1) · p · p ·
(p− 1) = p3(p− 1)2.

(b) Eigenvalue a has more than one linearly independent eigenvector. This happens if
and only if b = ch

i−a
. Then system (6.2) has non-trivial solutions. It is equivalent to{

ch
i−a

y + cz = 0,

hy + (i− a)z = 0,

which is further equivalent to {
c(hy + (i− a)z) = 0,

hy + (i− a)z = 0.

The last system is equivalent to z = − hy
i−a

and y is free variable. So eigenvalue a
has exactly two linearly independent eigenvectors, i.e., matrix B has three linearly
independent eigenvectors which means that it is of type (B). There are p·p·p·(p−1) =
p3(p− 1) matrices in this subcase.

Recapitulating the previous calculation, we detected matrices of type (A) only in the subcase
1)-(a)-(i). As there is only one vertex of type (A) we have

N(A,E) = 1.

Matrices of type (B) were detected only in subcase 2)-(b), the number of matrices was p3(p−1).
If we divide this number by the number of generators in case (B) we get

N(B,E) =
p3(p− 1)

p(p− 1)
= p2.
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In subcase 1)-(b)-(ii) we detected matrices of type (D) and it was the only case with matrices of
this type. The number of matrices was p2(p− 1)2 and if we divide this number by the number
of generators in case (D), we get

N(D,E) =
p2(p− 1)2

p2(p− 1)
= p− 1.

Matrices of type (E) were detected in numerous subcases, namely in 1)-(a)-(ii), 1)-(a)-(iii),
1)-(a)-(iv) and 1)-(b)-(i). We obtain the total number of matrices of type (E) by summing the
numbers of matrices from the subcases. We get

p(p− 1) + p(p− 1) + p(p− 1)2 + p2(p− 1) = p(p− 1)(1 + 1 + p− 1 + p) = p(p− 1)(2p+ 1).

If we divide this number by the number of generators in case (E), we get

N(E,E) =
p(p− 1)(2p+ 1)

p(p− 1)
= 2p+ 1.

In the remaining subcase (2)-(a) we detected matrices of type (F), namely the number of
matrices was p3(p− 1) and if we divide it by the number of generators of type (F) we get

N(F,E) =
p3(p− 1)2

p(p− 1)2
= p2.

The results of the above calculations are collected in Table 6.5.

Table 6.5: Neighborhood of a vertex v of type (E).
(E)

(A) 1
(B) p2

(C) 0
(D) p− 1
(E) 2p+ 1
(F) p2

(G) 0
(H) 0

Case (F): The centralizer of a matrix A of type (F) is determined in (5.19) and (5.18) as

C (A) =

{a c
a

b

 : a, b, c ∈ GF (p)

}
.

Let B be an arbitrary matrix from the centralizer. We consider four possibilities.
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1. If b = a and c = 0 then matrix is of type (A). There is unique subring of type (A), so
vertex v has one neighbor of type (A), i.e.,

N(A,F ) = 1.

2. If b = a and c ̸= 0 then matrix B is of type (E), because degmB = dimGF (p)⟨B⟩1 = 2.
The number of matrices of type (E) inside the centralizer is p · 1 · (p − 1). As a subring
of type (E) has p(p− 1) generators we conclude that vertex v of type (F) has p(p−1)

p(p−1)
= 1

neighbor of type (E), i.e.,
N(E,F ) = 1.

3. If b ̸= a and c = 0 then matrix B generates a subring of type (B). The number of matrices
of type (B) inside the centralizer is p · (p − 1) · 1 = p(p − 1). As a subring of type (B)
has p(p− 1) generators, we conclude that vertex v of type (F) has p(p−1)

p(p−1)
= 1 neighbor of

type (B), i.e.,
N(B,F ) = 1.

4. If b ̸= a and c ̸= 0 then matrix B has two different eigenvalues and mB = (x− a)2(x− b)
because c ̸= 0, i.e., B is of type (F). The number of matrices of type (F) inside the
centralizer is p · (p − 1) · (p − 1) = p(p − 1)2. As a subring of type (F) has p(p − 1)2

generators, we conclude that vertex v of type (F) has p(p−1)2

p(p−1)2
= 1 neighbor of type (F),

i.e.,
N(F, F ) = 1.

The same can be concluded from Proposition 4.4.

All the other types are not present in the centralizer so

N(C,F ) = N(D,F ) = N(G,F ) = N(H,F ) = 0.

The results of the above calculations are collected in Table 6.6.
Case (G): The centralizer of a matrix A of type (G) is determined in (5.25) and (5.27) as

C (A) ∼= GF (p3).

In Chapter 5 we found out that the only subfield of the centralizer C (A) ∼= GF (p3), and
hence the only subring, is isomorphic to GF (p). This means that the vertex v of type (G) has
only two neighbors: unique vertex of type (A) and v itself, i.e.,

N(A,G) = N(G,G) = 1

and
N(B,G) = N(C,G) = N(D,G) = N(E,G) = N(F,G) = N(H,G) = 0.
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Table 6.6: Neighborhood of a vertex v of type (F).
(F)

(A) 1
(B) 1
(C) 0
(D) 0
(E) 1
(F) 1
(G) 0
(H) 0

Table 6.7: Neighborhood of a vertex v of type (G).
(G)

(A) 1
(B) 0
(C) 0
(D) 0
(E) 0
(F) 0
(G) 1
(H) 0

These results are collected in Table 6.7.
Case (H): The centralizer of a matrix A of type (H) is determined in (5.38) and (5.37) as

the set of matrices of the form

B =

 a
b −ca0
c b− ca1


where a, b, c ∈ GF (p) are arbitrary and a1 and a0 are fixed and depend on A. In Chapter 5,
Case (H), we showed that matrix B is a generator of the subring ⟨A⟩1, i.e., it is of type (H),
if and only if c ̸= 0. This means that there are p · p · (p − 1) = p2(p − 1) matrices of type (H)
inside the centralizer. Dividing by the number of generators of a subring of type (H) we obtain

N(H,H) =
p2(p− 1)

p2(p− 1)
= 1.

For c = 0 we have B =
[
a
b
b

]
. If b = a then matrix B is a scalar matrix, so vertex v has a
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unique neighbor of type (A), i.e.,
N(A,H) = 1.

If b ̸= a matrix B is of type (B). We have p · (p− 1) such matrices, and if we divide it by the
number of generators of a subring of type (B) we get

N(B,H) =
p(p− 1)

p(p− 1)
= 1.

The results of the above calculations are collected in Table 6.8.

Table 6.8: Neighborhood of a vertex v of type (H).
(H)

(A) 1
(B) 1
(C) 0
(D) 0
(E) 0
(F) 0
(G) 0
(H) 1

The results about the neighborhoods of all the vertices of the Λ1(M3(GF (p))) obtained in
this chapter are summarized in Table 6.9.

Table 6.9: Neighborhoods of vertices of Λ1(M3(GF (p))).
(A) (B) (C) (D) (E) (F) (G) (H)

(A) 1 1 1 1 1 1 1 1
(B) (p2 + p+ 1)p2 p2 + p+ 1 3 0 p2 1 0 1
(C) 1

6
(p2 + p+ 1)p3(p+ 1) 1

2
(p2 + p) 1 0 0 0 0 0

(D) (p3 − 1)(p+ 1) 0 0 1 p− 1 0 0 0
(E) (p2 + p+ 1)(p+ 1) p+ 1 0 1 2p+ 1 1 0 0
(F) (p2 + p+ 1)p2(p+ 1) p+ 1 0 0 p2 1 0 0
(G) 1

3
(p3 − p)(p3 − p2) 0 0 0 0 0 1 0

(H) 1
2
(p3 − 1)p3 1

2
p(p− 1) 0 0 0 0 0 1
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Chapter 7

Subgraph induced on V(B) ∪ V(E)

In this chapter we are going to describe the subgraph of the Λ1(M3(GF (p))) induced on the set
V(B)∪V(E). We will refer to this subgraph as (B)-(E) graph. In order to describe (B)-(E) graph,
we are going to use projective plane over the field GF (p). The motivation for this approach
is as follows. Take a vertex v of type (B) and suppose it is represented by a matrix A. We
know that matrix A is diagonalisable, with two different eigenvalues in GF (p). Without lost of
generality we can assume that A is diagonal with eigenvalues λ and µ, i.e.,

A =

λ µ
µ

 .

Note that vertex v is also represented by matrix A− µI, which induces a decomposition of the
vector space GF (p)3 in the sense that

GF (p)3 = Im(A− µI)⊕Ker(A− µI) ∼= GF (p)⊕GF (p)2.

As 1-dimensional subspace Im(A − µI) represents a point P in a projective plane and 2-
dimensional subspace Ker(A − µI) represents a line L, it is natural to use projective plane
to describe vertices of type (B). Once P and L are given, a diagonal matrix A is uniquely
determined up to the eigenvalues λ and µ, as we will show in Section 7.2. Similar consideration
can be done also for a vertex of type (E).

7.1 Projective plane over GF (p) and its incidence matrix

Let us recall the notion of the projective plane over the field GF (p), which we denote by
PG(2, p), see [11]. Consider the set of all 1-dimensional subspaces of the vector space GF (p)3

and denote it by P and the set of all 2-dimensional subspaces of the vector space GF (p)3 and
denote it by L . The points of the projective plane PG(2, p) are the elements of P while the
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lines are the elements of L . Furthermore, a point P ∈ P lies on a line L ∈ L if and only if
P ⊂ L and we denote this by P ∈ L.

The cardinality of the set of points P is given as the Gaussian p-binomial coefficient with
n = 3 and k = 1, i.e.

|P| =
[
3
1

]
p

=
p3 − 1

p− 1
= p2 + p+ 1.

The cardinality of the set of lines L is equal to

|L | =
[
3
2

]
p

=
(p3 − 1)(p2 − 1)

(p2 − 1)(p− 1)
= p2 + p+ 1.

Every line contains [
2
1

]
p

=
p2 − 1

p− 1
= p+ 1

points and every point P lies on [
2
1

]
p

= p+ 1

lines, because 2-dimensional subspaces of GF (p)3 that contain 1-dimensional subspace P are
in a bijective correspondence with 1-dimensional subspaces of the 2-dimensional factor space
GF (p)3/P. The plane PG(2, p) can be described by incidence matrix which is 0-1 matrix of the
order (p2 + p+ 1)× (p2 + p+ 1). Each row of the incidence matrix corresponds to a point and
each column of the matrix corresponds to a line, where (P,L) entry of the matrix is 1 if P ∈ L,
otherwise it is 0. Each row and each column of incidence matrix contains exactly p+ 1 ones.

We denote
B = {(P,L) ∈ P × L : P /∈ L} (7.1)

and
E = {(P,L) ∈ P × L : P ∈ L}. (7.2)

Elements of B correspond to zeros in the incidence matrix and elements of E correspond to
ones. Obviously, |E | = (p+ 1)(p2 + p+ 1) and |B| = p2(p2 + p+ 1).

We will now explicitly describe the incidence matrix of the projective plane PG(2, p). The
description is adapted from [10]. Let e be the vector of length p with 1 at all positions, i.e.,

e =
[
1 1 · · · 1

]T ∈ Rp.

For every s ∈ {1, 2, . . . , p} let Rs ∈ Mp(R) be the matrix with s-th row equal to eT and all
other entries 0, i.e.,

(Rs)i,j =

{
1, if i = s,

0, otherwise.
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Furthermore, for every s ∈ {2, . . . , p} and every t ∈ {1, 2, . . . , p} let Ss,t ∈ Mp(R) be the
permutation matrix defined as

(Ss,t)i,j =

{
1, if (s− 1)(i+ j) ≡ t (mod p),

0, otherwise.

Now, let Tp ∈ M1+p+p2(R) be 0-1 matrix defined as a block matrix

Tp =



1 eT 0 0 · · · 0
e 0 R1 R2 · · · Rp

0 RT
1 Ip Ip · · · Ip

0 RT
2 S2,1 S2,2 · · · S2,p

...
...

...
... . . . ...

0 RT
p Sp,1 Sp,2 · · · Sp,p


, (7.3)

where Ip is the identity matrix order p. It is proved in the [10] that Tp is the incidence matrix
of the plane PG(2, p).

In the case p = 2 the incidence matrix T2 of the projective plane PG(2, 2) (called also Fano
plane) is

T2 =



1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 1 1 0 0 1


.

In the case p = 3 the incidence matrix T3 of the projective plane PG(2, 3) is

T3 =



1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1 0 0 1
0 0 1 0 0 0 1 1 0 0 0 1 0
0 0 1 0 0 1 0 0 0 1 1 0 0
0 0 1 0 1 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 0 0 1 0 1 0
0 0 0 1 0 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0 0 0 0 1



.
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7.2 Bijection between V(B) ∪ V(E) and P × L

We will now establish a bijection between the sets V(B) and B. Let v ∈ V(B) be an arbitrary
vertex. Let A be a matrix representative of the vertex v. Then there exists an invertible matrix
S and λ, µ ∈ GF (p), µ ̸= λ, such that

A = S

λ µ
µ

S−1.

Now we can define a mapping ΦB : V(B) → B by

ΦB(v) = (Im(A− µI),Ker(A− µI)). (7.4)

Note that L = Ker(A − µI) is a 2-dimensional subspace of GF (p)3 so it belongs to L and
consequently P = Im(A − µI) is a 1-dimensional subspace of GF (p)3 so it belongs to P.
Furthermore, the intersection of P and L is trivial subspace so P /∈ L which means that ΦB(v)
belongs to B.

We need to prove that ΦB is well defined, i.e., ΦB(v) does not depend on the choice of
the representative A. Suppose that B is another matrix representative of the vertex v. Then
⟨B⟩1 = ⟨A⟩1 = Lin{I, A} so B = aI + bA where b ̸= 0. It follows that

B = S

a+ bλ
a+ bµ

a+ bµ

S−1.

Now we have

B − (a+ bµ)I = S

b(λ− µ)
0

0

S−1 = b(A− µI).

It follows that Im(B − (a+ bµ)I) = Im(A− µI) and Ker(B − (a+ bµ)I) = Ker(A− µI) which
shows that ΦB(v) is well defined.

Now, we want to show that mapping ΦB is a bijection. In order to do that we define a
mapping ΨB : B → V(B) as follows. Let (P,L) ∈ B be arbitrary. Let {b1} be the basis of P
and {b2, b3} be the basis of L. Since P /∈ L vectors b1, b2 and b3 are linearly independent so
the matrix S =

[
b1 b2 b3

]
, with columns b1, b2 and b3, is invertible. Take ΨB(P,L) to be the

vertex v in V(B) represented by the matrix of the idempotent linear operator with image P and
kernel L, i.e., the matrix A = SE1,1S

−1. Note that matrix A is independent of the choice of the
basis vectors b1, b2 and b3.

Since the matrix A has a double eigenvalue 0 and a simple eigenvalue 1, it is clear from
the definition of ΦB that ΦB(v) = (ImA,KerA) = (P,L), so that ΦB ◦ ΨB = IdB . Since
|V(B)| = |B| = p2(p2 + p+ 1), we conclude that Φ is a bijection.
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We will now establish a bijection between the sets V(E) and E . Let v ∈ V(E) be an arbitrary
vertex. Let A be a matrix representative of the vertex v. Then there exists an invertible matrix
S and λ ∈ GF (p), such that

A = S

λ 1
λ

λ

S−1.

Now we can define a mapping ΦE : V(E) → E by

ΦE(v) = (Im(A− λI),Ker(A− λI)). (7.5)

Note that L = Ker(A − µI) is a 2-dimensional subspace of GF (p)3 so it belongs to L and
P = Im(A−µI) is a 1-dimensional subspace of GF (p)3 so it belongs to P. Furthermore, P ∈ L
which means that ΦE(v) belongs to E .

We need to prove that ΦE is well defined, i.e., ΦE(v) does not depend on the choice of
the representative A. Suppose that B is another matrix representative of the vertex v. Then
⟨B⟩1 = ⟨A⟩1 = Lin{I, A} so B = aI + bA where b ̸= 0. It follows that

B = S

a+ bλ b
a+ bλ

a+ bλ

S−1.

Now we have

B − (a+ bλ)I = S

0 b
0

0

S−1 = b(A− λI).

It follows that Im(B − (a+ bλ)I) = Im(A− λI) and Ker(B − (a+ bλ)I) = Ker(A− λI) which
shows that ΦE(v) is well defined.

Now, we want to show that mapping ΦE is a bijection. In order to do that we define a
mapping ΨE : E → V(E) as follows. Let (P,L) ∈ E be arbitrary. Let {b1} be the basis of P and
b3 be the vector such that {b1, b3} is basis of L. As a final step, let b2 be the vector such that
{b1, b2, b3} is basis of GF (p)3. Now, we define matrix S =

[
b1 b2 b3

]
, with columns b1, b2 and

b3, obviously invertible. Take ΨE(P,L) to be the vertex v in V(E) represented by the matrix of
the nilpotent linear operator with image P and kernel L, i.e., the matrix A = SE1,2S

−1. Note
that vertex v is independent of the choice of the vectors b1, b2 and b3.

Since the matrix A has a triple eigenvalue 0, it is clear from the definition of ΦE that
ΦE(v) = (ImA,KerA) = (P,L), so that ΦE ◦ΨE = IdE . Since |V(E)| = |E | = (p2+p+1)(p+1),
we conclude that ΦE is a bijection.

We now combine the mappings ΦB and ΦE into a bijection

Φ : V(B) ∪ V(E) → B ∪ E = P × L

defined by Φ|V(B)
= ΦB and Φ|V(E)

= ΦE. Since V(B) and V(E) are disjoint, Φ is well defined.
Since also B and E are disjoint and ΦB and ΦE are bijections, Φ is a bijection.
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7.3 Geometrical interpretation of edges
We define a graph ∆ with vertex set V (∆) = P×L and edges defined as follows. Let v1 and v2
be elements of V(B)∪V(E). There is an edge between Φ(v1) and Φ(v2) in ∆ if and only if there is an
edge between v1 and v2 in the compressed commuting graph of the ring M3(GF (p)). This makes
the mapping Φ into a graph isomorphism between the induced subgraph of Λ1(M3(GF (p))) on
the set V(B)∪V(E) and ∆. Next theorem describes the edges of the graph ∆ in geometric terms.

Theorem 7.1. Let (P1, L1), (P2, L2) ∈ P ×L be arbitrary. There is an edge between (P1, L1)
and (P2, L2) in ∆ if and only if one of the following conditions holds

(a) P1 = P2 and L1 = L2,

(b) P1 ∈ L1, P2 ∈ L2, and either P1 = P2 or L1 = L2,

(c) P1 ̸= P2, L1 ̸= L2 and P2 ∈ L1 ∩ L2 and P1 ∈ L2 \ L1,

(d) P1 ̸= P2, L1 ̸= L2 and P1 ∈ L1 ∩ L2 and P2 ∈ L1 \ L2,

(e) P1 ̸= P2, L1 ̸= L2 and P1 ∈ L2 \ L1 and P2 ∈ L1 \ L2.

Proof. Let (P1, L1) = Φ(v1) and (P2, L2) = Φ(v2). Let A1 be the matrix representative of v1
with image P1 and kernel L1, and A2 be the matrix representative of v2 with image P2 and
kernel L2.

(⇐): Suppose that one of the conditions (a)–(e) holds.

(a) As (P1, L1) = (P2, L2) and Φ is bijection then v1 = v2. Since every vertex in Λ1(M3(GF (p)))
has a loop there is an edge between (P1, L1) and (P2, L2).

(b) The conditions imply that (P1, L1), (P2, L2) ∈ E , so that v1, v2 ∈ V(E).

If P1 = P2 then P2 ∈ L1 and P1 ∈ L2, so A1A2 = 0 and A2A1 = 0. Combining last
two equation we get A1A2 = A2A1 which means that there is an edge between v1 and v2,
hence also between (P1, L1) and (P2, L2).

If L1 = L2 then again P2 ∈ L1 and P1 ∈ L2, and we obtain the same conclusion.

(c)–(e) Each set of the conditions imply that P2 ∈ L1 and P1 ∈ L2, so there is an edge between
(P1, L1) and (P2, L2), as shown above.

(⇒): Suppose that there is an edge between (P1, L1) and (P2, L2) in ∆. Then there is an edge
between v1 and v2 so we have A1A2 = A2A1. If (P1, L1) = (P2, L2) then condition (a) holds. So
suppose that (P1, L1) ̸= (P2, L2). Note that matrices A1 and A2 are of rank 1, as their images
are P1 and P2, which are vector subspaces of dimension 1.

We claim that A1A2 = 0. Suppose this is not the case. Then rank(A1A2) = 1. This implies
that Im(A1A2) = Im(A1) = P1 and Ker(A1A2) = Ker(A2) = L2. As A1A2 = A2A1, we conclude
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similarly Im(A2A1) = Im(A2) = P2 and Ker(A2A1) = Ker(A1) = L1. Hence, P1 = P2 and
L1 = L2 which is in contradiction with (P1, L1) ̸= (P2, L2). This proves our claim.

From the above we get A1A2 = 0 and A2A1 = 0. This implies P2 ∈ L1 and P1 ∈ L2. We
now consider four cases:

(i) P1 ∈ L1 and P2 ∈ L2: If P1 = P2 or L1 = L2 then the condition (b) holds. So, suppose
the opposite P1 ̸= P2 and L1 ̸= L2. This means that two different points P1 and P2 lie at
the same time on two different lines L1 and L2, which is impossible.

(ii) P1 /∈ L1 and P2 ∈ L2: Since P1 /∈ L1 and P2 ∈ L1 we have P1 ̸= P2. Similarly, as P1 /∈ L1

and P1 ∈ L2 we get L1 ̸= L2. Furthermore, P2 ∈ L1 ∩ L2 and P1 ∈ L2 \ L1. Hence,
condition (c) holds.

(iii) P1 ∈ L1 and P2 /∈ L2: Since P2 /∈ L2 and P1 ∈ L2 we have P1 ̸= P2. Similarly, as P2 /∈ L2

and P2 ∈ L1 we get L1 ̸= L2. Furthermore, P1 ∈ L1 ∩ L2 and P2 ∈ L1 \ L2. Hence,
condition (d) holds.

(iv) P1 /∈ L1 and P2 /∈ L2: Since P1 ∈ L2 and P1 /∈ L1 we get P1 ∈ L2 \ L1. Similarly, as
P2 ∈ L1 and P2 /∈ L2 we get P2 ∈ L1 \ L2. This implies that P1 ̸= P2 and L1 ̸= L2, hence
condition (e) holds.

This finishes the proof. □

We remark that condition (a) of Theorem 7.1 describes the loops in ∆. Condition (b)
describes the edges between two different vertices in E , it means that two ones in the incidence
matrix are connected if and only if they lie in the same row or in the same column. Conditions
(c) and (d) describe edges between vertices in B and E , it means that 0 and 1 in incidence
matrix are connected if and only if they lie in different rows and columns, and the other two
entries of the 2× 2 submatrix of Tp, which contains the two entries 0 and 1, are both equal to
1. Condition (e) describes edges between two different vertices in B. It means that two zeros
in incidence matrix Tp are connected if and only if they lie in different rows and columns, and
the other two entries of the 2× 2 submatrix of Tp, which contains the two zeros, are both equal
to 1.

Figure 7.1 shows all possible 2 × 2 submatrices of Tp and the edges between their entries.
The red vertices in the Figure are vertices of type (B) and correspond to the zeroes in matrix
Tp, while the blue vertices are vertices of type (E) and correspond to ones in the matrix Tp.
Note that 2 × 2 submatrix of Tp cannot contain only ones because that would mean that two
different lines intersect two different points, which is not possible in the plane.
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Figure 7.1: Possible 2× 2 submatrices of Tp and the edges between their entries.
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Chapter 8

Description of Λ1(M3(GF (p)))

For convenience we recall Table 5.1 and Table 6.9. Table 8.1 gives the number of vertices of
each type and the number of matrices compressed into each vertex. In Table 8.2 entry in the
row (X) and column (Y) gives the number of vertices of type (X) in the neighborhood of a
vertex of type (Y), so the column (Y) of the Table 8.2 corresponds to the neighborhood of the
vertex of type (Y).

Table 8.1: Vertices of Λ1(M3(GF (p))).
CASE Number of vertices Number of matrices compressed dim⟨A⟩1
(A) 1 p 1
(B) (p2 + p+ 1)p2 p(p− 1) 2
(C) 1

6
(p2 + p+ 1)p3(p+ 1) p(p− 1)(p− 2) 3

(D) (p3 − 1)(p+ 1) p2(p− 1) 3
(E) (p2 + p+ 1)(p+ 1) p(p− 1) 2
(F) (p2 + p+ 1)p2(p+ 1) p(p− 1)2 3
(G) 1

3
(p3 − p)(p3 − p2) p3 − p 3

(H) 1
2
(p3 − 1)p3 p2(p− 1) 3

8.1 Properties of Λ1(M3(GF (p)))

Note that properties of (B)-(E) graph are described in Chapter 7. Here we describe the prop-
erties of the rest of the graph, according to the type of vertices. On the way we describe how
to construct the graph Λ1(M3(GF (p))), starting with (B)-(E) graph and adding to it vertices
of other type.

(C) Note that for p = 2 there are no vertices of type (C). Suppose that p ≥ 3. From the Table
8.1 we see that there are 1

6
(p2+p+1)p3(p+1) vertices of type (C). From Table 8.2 we see
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Table 8.2: Neighborhoods of vertices of Λ1(M3(GF (p))).
(A) (B) (C) (D) (E) (F) (G) (H)

(A) 1 1 1 1 1 1 1 1
(B) (p2 + p+ 1)p2 p2 + p+ 1 3 0 p2 1 0 1
(C) 1

6
(p2 + p+ 1)p3(p+ 1) 1

2
(p2 + p) 1 0 0 0 0 0

(D) (p3 − 1)(p+ 1) 0 0 1 p− 1 0 0 0
(E) (p2 + p+ 1)(p+ 1) p+ 1 0 1 2p+ 1 1 0 0
(F) (p2 + p+ 1)p2(p+ 1) p+ 1 0 0 p2 1 0 0
(G) 1

3
(p3 − p)(p3 − p2) 0 0 0 0 0 1 0

(H) 1
2
(p3 − 1)p3 1

2
p(p− 1) 0 0 0 0 0 1

that there will be no (C)–(C) edges except the loop at on each vertex of type (C). Note that
every vertex of type (C) is connected to precisely 3 vertices of type (B) and by (5.6) these
3 vertices form a triangle, because a subring generated by one matrix is automatically
commutative. So, every vertex of type (C) is connected to the vertices of a unique triangle
of (B) vertices in (B)-(E) graph. Now, we show the opposite, that to every triangle of
(B) vertices correspond a (C) vertex, connected to them. Let v1 = [A1]1, v2 = [A2]1 and
v3 = [A3]1 be 3 different vertices of type (B) forming a triangle. Since matrices A1, A2

and A3 are diagonalizable and they commute, they are simultaneously diagonalizable, i.e.,
there exists invertible matrix S such that A1 = SD1S

−1, A2 = SD2S
−1 and A3 = SD3S

−1.
Take a set

D = {SDS−1 : D is diagonal }.

Obviously, D is a subring and it is an isomorphic copy of subring of all diagonal matrices,
generated by any diagonal matrix with three different elements on the main diagonal.
Generators of D are compressed into a vertex v of type (C). Since A1, A2 and A3 are
elements of D, subrings ⟨A1⟩1, ⟨A2⟩1 and ⟨A3⟩1 are subrings of D, i.e., v1, v2 and v3 are
connected to v. As a consequence, the number of triangles of vertices of type (B) is equal
to the number of vertices of type (C), which is equal to 1

6
(p2 + p+ 1)p3(p+ 1).

So, to add vertices of type (C) to the existing graph, for every triangle of vertices of type
(B) we add one vertex of type (C), connect it the vertices of the triangle and put a loop
on the vertex of type (C).

(F) From the Table 8.1 we see that there are (p2 + p+ 1)p2(p+ 1) vertices of type (F). From
Table 8.2 we see that there will be no (F)–(F) edges except a loop on each vertex of type
(F). Note that every vertex of type (F) is connected to precisely one vertex of type (B)
and one vertex of type (E). From (5.19) we see that those two vertices of type (B) and
(E) are connected by an edge, because a subring generated by one matrix is automatically
commutative. So, every vertex of type (F) is connected to the endpoints of a unique (B)–
(E) edge. From Table 8.1 we know that the number of vertices of type (B) is (p2+p+1)p2
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and from Table 8.2 we have that one vertex of type (B) is connected to p+ 1 vertices of
type (E) so, we have in total (p2 + p + 1)p2 · (p + 1) (B)–(E) edges. Note that we have
the same number of vertices of type (F), hence, the endpoints of every (B)–(E) edge are
connected to a unique vertex of type (F).
So, to add vertices of type (F) to the existing graph, for every (B)–(E) edge we add one
vertex of type (F), connect it to the edge endpoints and put a loop on the vertex of type
(F).

(H) From the Table 8.1 we see that there are 1
2
(p3 − 1)p3 vertices of type (H). From Table

8.2 we see that there will be no (H)–(H) edges except a loop at each vertex of type (H).
Also, every vertex of type (G) will be connected to the unique vertex of type (A) and to
one vertex of type (B). On the other hand, each vertex of type (B) has p(p−1)

2
vertices of

type (H) in the neighborhood, see Table 8.2.
So, to add vertices of type (H) to the existing graph, we first partition the set of vertices
of type (H) into (p2 + p + 1)p2 parts, each containing p(p−1)

2
vertices. Note that we have

the same number of parts as the number of vertices of type (B). Now we put a loop on
every vertex from one part, connect all vertices from this part to a fixed vertex of type
(B). Then repeat the same procedure for the next part and vertex (B), until we spend all
parts and vertices of type (B).

(D) From the Table 8.1 we see that there are (p3 − 1)(p+1) vertices of type (D). From Table
8.2 we see that there will be no (D)–(D) edges except a loop on each vertex of type (D)
and that every vertex od type (D) will be connected to precisely one vertex of type (E)
and to a unique vertex of type (A). On the other hand, from Table 8.2 we see that one
vertex of type (E) has p− 1 vertices of type (D) in the neighborhood.
So, to add vertices of type (D) to the existing graph, we first partition the set of vertices
of type (D) into (p2 + p+ 1)(p+ 1) parts, each containing (p− 1) vertices. Note that we
have the same number of partitions as the number of vertices of type (E). Now we put a
loop on every vertex from one part, connect all vertices from this part to a fixed vertex
of type (E). Then repeat the same procedure for the next part and vertex (E), until we
spend all parts and vertices of type (E).

(G) From the Table 8.1 we see that there are 1
3
(p3 − p)(p3 − p2) vertices of type (G). From

Table 8.2 we see that there will be no (G)–(G) edges except a loop on each vertex of type
(G) and that every vertex of type (G) is connected by an edge to the unique vertex of
type (A), see Table 8.2.
So, we add 1

3
(p3 − p)(p3 − p2) vertices of type (G) to the existing graph and put a loop

on every vertex of type (G).

(A) We add the unique vertex of type (A) and connect it to every other vertex and put a loop
on it.
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8.2 Construction of Λ1(M3(GF (p)))

We construct the compressed commuting graph of the ring M3(GF (p)) as follows:

1. We construct (B)-(E) graph described in Chapter 7. The vertices of type (B) correspond
to the zeroes in the incidence matrix (7.3) of the projective geometry PG(2, p) and the
vertices of type (E) correspond to ones in the same matrix. The edges between these
vertices are presented in the Figure 7.1.

2. If p ≥ 3 then for every triangle of vertices of type (B) we add one vertex of type (C) and
connect it the vertices of the triangle, otherwise omit this step.

3. For every (B)–(E) edge we add one vertex of type (F) and connect it to the edge endpoints.

4. For every vertex of type (B) we add p(p−1)
2

vertices of type (H) and connect them to the
vertex of type (B).

5. For every vertex of type (E) we add p − 1 vertices of type (D) and connect them to the
vertex of type (E).

6. We add 1
3
(p3 − p)(p3 − p2) vertices of type (G).

7. We add one vertex of type (A) and connect it to every other vertex.

8. We put a loop on every vertex.

With this step, the construction of compressed commuting graph of the ring M3(GF (p)) is
finished.
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Chapter 9

Commuting graph of M3(GF (p))

In this chapter we demonstrate how compressed commuting graph can be used to describe
the ordinary (non-compressed) commuting graph. For 2 × 2 matrices over a finite field F the
structure of the commuting graph Γ(M2(F)) is described in [2, Theorem 2]. In particular,
this graph is a disjoint union of |F|2 + |F| + 1 cliques of size |F|2 − |F|. For 3 × 3 matrices
the description of the commuting graph Γ(M3(F)) is still an open problem. The graph was
partially described in [22, Lemma 4.1] where the authors showed that the graph has only one
connected component that is not a clique. Furthermore, every connected component that is a
clique equals F[A]\FI where A is a non-derogatory matrix with irreducible minimal polynomial
such that there is no intermediate field between fields F and F[A]. Note that F[A] is a field as
minimal polynomial is irreducible.

With the results of this thesis we can now completely describe the graph Γ(M3(F)) in the
case when F = GF (p). We will do this using the so-called "blow-up" process that was originally
used for zero-divisor graphs in [16, 12].

We start with Λ1(M3(GF (p))) described in Chapter 8. To obtain the graph Γ(M3(GF (p)))
we first remove the unique vertex of type (A) and all edges incident to this vertex. Then, from
every vertex we remove the loop. In the final step, we "blow-up" each vertex into several copies
using the numbers from Table 8.1. In particular, for a vertex v of a certain type we can find
in Table 8.1 the number of matrices that were compressed into vertex v, namely |[A]1|, where
A is a matrix representative of vertex v. We replace vertex v with a clique of size |[A]1| and
connect every vertex of this clique to all other vertices that vertex v was connected to. Once
we do this for all the vertices we obtain the graph Γ(M3(GF (p))).

Note that after removing the unique vertex of type (A) along with all of his edges and all
the loops from Λ1(M3(GF (p))), the graph breakes into several connected components. Some
of these components are single vertices, and these are precisely vertices of type (G) and there
are 1

3
(p3 − p)(p3 − p2) of them. After the "blow-up" process these become cliques of size p3 − p

in Γ(M3(GF (p))). There is only one additional connected component containing all the other
vertices. This is in accordance with the partial description in [22, Lemma 4.1].
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as Vice President of the Assembly of the Association.

• Member of the Mathematical Society of the city of Banja Luka; served one term
on the Management Board.

• President of the Management Board of the City Library Mrkonjic Grad, two
terms.

• Member of the School Board of the Mechanical School in Mrkonjic Grad, currently
serving the third term.

• President of the Supervisory Board of the Public Enterprise "Hydroelectric
Power Plants on the Vrbas."



Прилог 3.  

Изјава 1 
 

 

 

ИЗЈАВА О АУТОРСТВУ 
 

Изјављујем 

да је докторска дисертација 

 

 

Наслов рада Компресовани графови комутативности прстена и других алгебарских 

структура      

 

Наслов рада на енглеском језику Compressed commuting graphs of rings and other algebraic 

structures 

 резултат сопственог истраживачког рада, 

да докторска дисертација, у цјелини или у дијеловима, није била предложена за 

добијање било које дипломе према студијским програмима других високошколских 

установа, 

 да су резултати коректно наведени и 

 да нисам кршио/ла ауторска права и користио интелектуалну својину других лица. 

 

 

 

 

 

 Потпис докторанта 

У Бањој Луци, дана 19. јуна 2025. године  Иван Вања Бороја, с.р. 

 ____________________________ 

 



 

Изјава 2 

 

 

Изјава којом се овлашћује Универзитет у Бањој Луци 

 да докторску дисертацију учини јавно доступном 
 

 

 

Овлашћујем Универзитет у Бањој Луци да моју докторску дисертацију под насловом  

Компресовани графови комутативности прстена и других алгебарских структура 

која је моје ауторско дјело, учини јавно доступном.  

 

Докторску дисертацију са свим прилозима предао/ла сам у електронском формату 

погодном за трајно архивирање. 

 

Моју докторску дисертацију похрањену у  дигитални  репозиторијум  Универзитета у 

Бањој Луци могу да користе сви који поштују одредбе садржане у одабраном типу лиценце 

Креативне заједнице (Creative Commons) за коју сам се одлучио/ла. 

 

 Ауторство 

 Ауторство – некомерцијално 

 Ауторство – некомерцијално – без прераде 

 Ауторство – некомерцијално – дијелити под истим условима 

 Ауторство – без прераде 

 Ауторство – дијелити под истим условима 

 

 

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис лиценци 

дат је на полеђини листа). 

 

 Потпис докторанта 

У Бањој Луци, дана 19.јуна 2025. године  Иван Вања Бороја, с.р. 

 ____________________________ 

 

 



 

 

ТИПОВИ ЛИЦЕНЦИ КРЕАТИВНЕ ЗАЈЕДНИЦЕ 

Ауторство (CC BY) 
 

Дозвољавате умножавање, дистрибуцију и јавно саопштавање дјела, и прераде, ако се наведе 

име аутора, на начин одређен од аутора или даваоца лиценце, чак и у комерцијалне сврхе. 

Ово је најслободнија од свих лиценци. 

Ауторство - некомерцијално (CC BY-NC) 
 

Дозвољавате умножавање, дистрибуцију и јавно саопштавање дјела и прераде, ако се наведе 

име аутора, на начин одређен од аутора или даваоца лиценце. Ова лиценца не дозвољава 

комерцијалну употребу дјела. 

Ауторство - некомерцијално - без прерада (CC BY-NC-ND) 
 

Дозвољавате умножавање, дистрибуцију и јавно саопштавање дјела, без промјена, 

преобликовања или употребе дјела у свом дијелу, ако се наведе име аутора, на начин одређен 

од аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дјела. У 

односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења 

дјела. 

Ауторство - некомерцијално - дијелити под истим условима (CC BY-NC-SA) 
 

Дозвољавате умножавање, дистрибуцију и јавно саопштавање дијела, и прераде, ако се 

наведе име аутора, на начин одређен од аутора или даваоца лиценце, и ако се прерада 

дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну 

употребу дјела и прерада 

Ауторство - без прерада (CC BY-ND) 
 

Дозвољавате умножавање, дистрибуцију и јавно саопштавање дјела, без промјена, 

преобликовања или употребе дјела у свом дјелу, ако се наведе име аутора, на начин одређен 

од аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дјела. 

Ауторство - дијелити под истим условима (CC BY-SA) 
 

Дозвољавате умножавање, дистрибуцију и јавно саопштавање дјела, и прераде, ако се наведе 

име аутора, на начин одређен од аутора или даваоца лиценце, и ако се прерада дистрибуира 

под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дјела и 

прерада. Слична је софтверским лиценцама, односно лиценцама отвореног кода. 

 

 

Напомена: Овај текст није саставни дио изјаве аутора. 

Више информација на линку: http://creativecommons.org.rs/        



 Изјава 3 

 

 

Изјава о идентичности штампане и електронске верзије 

докторске дисертације 
 

 

 

 

Име и презиме аутора  Иван Вања Бороја 

 

 Наслов рада Компресовани графови комутативности прстена и других алгебарских структура 

 

 

Ментор   Др Ник Стопар 

 

 

 

Изјављујем да је штампана верзија моје докторске дисертације идентична електронској 

верзији коју сам предао/ла за дигитални репозиторијум Универзитета у Бањој Луци. 

 

 

 

 

 Потпис докторанта 

У Бањој Луци, дана 19. јуна 2025. године  Иван Вања Бороја, с.р. 

 ____________________________ 

 






















	Introduction
	Preliminaries
	Compressed commuting graph of a unital ring
	Compressed commuting graph of ℳ₂(GF(p))
	Vertex set of Λ¹(ℳ₃(GF(p)))
	Neighborhoods of vertices of Λ¹(ℳ₃(GF(p)))
	Subgraph induced on V(B) V(E)
	Projective plane over GF(p) and its incidence matrix
	Bijection between V(B)V(E) and ¶L
	Geometrical interpretation of edges

	Description of Λ¹(ℳ₃(GF(p))) 
	Properties of Λ¹(ℳ₃(GF(p)))
	Construction of Λ¹(ℳ₃(GF(p)))

	Commuting graph of ℳ₃(GF(p))
	Bibliography

