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Abstract

In this thesis we investigate the recently introduced compressed commuting graph A!(R)
of a unital ring R. This is a graph whose vertices are equivalence classes of elements of R
according to the relation ~ which is defined as a ~ b if and only if a and b generate the
same unital subring. Two vertices are connected by an edge if and only if their representatives
commute. This graph can be seen as a compression of the regular commuting graph I'(R). We
prove in the thesis that for matrix algebras over finite fields this compression is the best possible
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We also discuss some properties of this graph, for example, the graph gives information about
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In our recent article we were able to completely describe the graph A'(M,(F)) for a finite
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Jordan form of matrices, and then determine the structure of the neighborhood of each vertex.
The core part of the graph is then described using a bijective correspondence with a point-line
pairs in the projective plane over GF'(p). In addition, we also give a short algorithm that can be
used to construct A'(M3z(GF(p))). As a consequence of our result we are also able to describe
the graph I'(M3(GF(p)) using the so-called "blow-up" process. The description of this graph
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Rezime

U ovoj tezi istrazujemo nedavno predstavljeni kompresovani graf komutativnosti A*(R) je-
dini¢nog prstena R. Ovo je graf ¢iji su vrhovi klase ekvivalencije elemenata prstena R u odnosu
na relaciju ~ koja je definisana sa a ~ b ako i samo ako a i b generiSu isti jedini¢ni podprsten.
Pri tome, dva ¢vora su povezana granom ako i samo ako njihovi predstavnici komutiraju. Ovaj
graf se moze vidjeti kao kompresija uobi¢ajenog grafa komutativnosti I'(R). U tezi dokazujemo
da je, za matri¢ne algebre nad kona¢nim poljima, ova kompresija najbolja moguc¢a kompresija
koja indukuje funktor iz kategorije jedini¢nih prstena u kategoriju grafova. Takodje, raspravl-
jamo o nekim svojstvima ovog grafa, na primjer, graf daje informacije o skupu jedini¢nih
podprstena R generisanih jednim elementom. Ovakav pristup je primijenjen u nasem rezultatu
koji karakteriSse beskonacne jedini¢ne prstenove sa kona¢nim brojem jedini¢nih podprstena.

U nasem nedavno objavljenom ¢lanku uspjeli smo u potpunosti opisati graf A'(My(F)) za
konac¢no polje F. Glavni doprinos ove teze je potpuni opis grafa A'(Ms3(FF)) za prosto polje
F = GF(p). Da bismo postigli ovaj cilj, kombinovali smo metode iz teorije polja, projektivne
geometrije i kombinatorike. Prvo opisujemo skup vrhova, oslanjajuci se na Zordanovu formu
matrice, a zatim odredujemo strukturu susjedstva svakog vrha. Glavni dio grafa se zatim
opisuje koristenjem bijektivne korespondencije s parovima tacka-linija u projektivnoj ravni nad
poljem GF(p). Osim toga, dajemo i kratki algoritam za konstrukciju A'(M3(GF(p))). Kao
posljedica naSeg rezultata, takode smo u mogucnosti opisati graf I'(Ms(GF(p)) koristenjem
takozvanog procesa "eksplozije". Opis ovog grafa bio je otvoren problem nekoliko godina.
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Chapter 1

Introduction

One of the most important notions in algebra is the notion of commutativity. Given an algebraic
structure A, equipped with an operation of multiplication, two elements a and b from A commute
if and only if ab = ba. It is said that an algebraic structure A is commutative if every two
elements from A commute. If the structure A is not commutative, it is important to investigate
the properties of the relation of commutativity in A. There are various approaches to this
problem but one of the most recent ones is to visualize the relation of commutativity using the
graph, the so called commuting graph, where vertices correspond to the non-central elements of
the structure and the edges describe commutativity. This is particularly interesting for finite
structures, since we obtain finite graphs.

To the best of our knowledge, this approach was first developed for groups in [15] as an
attempt towards the classification of finite simple groups. Since then, the commuting graph
of finite groups have been investigated by several authors. In [28] the authors prove that
the isomorphism problem, which asks whether two groups with isomorphic commuting graphs
are themselves isomorphic, has a positive answer for many simple groups. The properties of
the commuting graph of symmetric and alternating groups, in particular, its diameter, was
considered in [29], while the diameter of the commuting graph of a general finite group was
discussed in [36]. Recently, some interesting connections between the structure of the group and
the structure of its commuting graph were discovered in [34]. The definition of the commuting
graph was later extended to several other algebraic structures. For rings, the commuting graph
was introduced in [2] where the authors determined the minimum and maximum degree and
the clique number of the graph of the ring of matrices over a finite field. They also discuss
the isomorphism problem for this graph. The commuting graph of a ring has attracted a lot
of attention since its introduction. The research focuses mainly on the properties of this graph
such as the connectedness and diameter, as well as the isomorphism problem for this graph, see
for example [1, 35, 19, 24|. Furthermore, the commuting graph was also considered for bounded
linear operators on a Hilbert space, see [5]. In [32] it was shown that the commuting graph
of the Banach algebra of bounded linear operators on a complex Hilbert space determines the
dimension of the Hilbert space. Some results can be found on commuting graph of semigroups



[9], Lie algebras [40], etc.

In this thesis we will be mostly interested in the investigation of the relation of commutativ-
ity in unital rings, in particular, rings of matrices over finite fields. The commuting graph of the
ring was introduced in [2]. Given a ring R, the commuting graph I'(R) is a simple graph whose
vertices are non-central elements of the ring R and two different elements a, b from the ring are
connected by an edge if and only if ab = ba. Over the past two decades the commuting graph
of a ring was investigated by many researchers who studied the connectedness [1, 20|, diameter
and girth [4, 21, 39|, clique number [2|, etc. Some authors also investigate the complement of
this graph [25].

The main motivation for considering the commuting graph of a ring is to be able to use
graph theoretical tools to investigate and describe the structure and properties of the ring.
This immediately opens an important question whether the graph I'(R) uniquely determines
the ring R. In particular, if I'(R;) = I'(Ry) does it follow that Ry = Ry? This is known
as the isomorphism problem. A particularly important case of this problem is the case when
Ry = M, (F) is the ring of matrices over a finite field F. In this case the isomorphism problem
has a positive answer when n = 2 and n = 3 as shown in [35] and [24]. Also, when n = 2*3! with
k > 1 apositive answer is given in [23]. For other values for n it is still an open problem. Another
important problem is the problem of automorphism which asks whether any automorphism of
the graph I'(R) is induced by an automorphism of a ring R, see for example [41].

There are several other types of graphs which help us in understanding the structure and
various properties of rings. Examples of such graphs are the zero-divisor graph [8, 38|, the total
graph [6] and inclusion ideal graph [3|. Let us look at the zero-divisor graph more closely, in
order to explain the motivation for the present thesis. The zero-divisor graph of a ring R is
a simple graph whose vertices are nonzero zero-divisors of R where two distinct zero-divisors
a and b are connected by a (directed) edge if and only if ab = 0, see [8, 38]. For certain
rings this graph can have a lot of vertices and edges which makes it hard to visualize. In an
attempt to make the graph smaller and thus more manageable Mulay introduced the graph of
equivalence classes of zero-divisors of a commutative ring, see paper [37]. This graph was later
called the compressed zero-divisor graph by Anderson and LaGrange [7|. Mulay identified the
elements that are indistinguishable in the zero-divisor graph, i.e., have the same annihilator,
and compressed them into one vertex. Although this compression significantly reduces the size
of the vertex set of the graph it lacks certain favorable properties. In particular, it does not
behave well when homomorphisms of rings are considered. To resolve this issue, a new type of
compression was introduced in [16, 17|, which was used to define new compressed zero divisor
graph ©(R). The compression was based on different relation of equivalence, that identified
the elements which generate the same one-sided ideals. The benefit of this new approach is
that the creation of the compressed zero-divisor graph can be extended to a functor © from the
category of rings and ring homomorphisms to the category of simple graphs with loops and graph
homomorphisms. Furthermore, this means that the graph O(R) better captures the structural
properties of the ring R in the sense that there is a nicer connection between the structure of R
and the structure of ©(R), see [16, 17| for more details. It was even shown in the same papers
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that the chosen compression is the best possible, i.e., underlying relation of equivalence is the
coarsest relation of equivalence that still induces a functor, see [17, Proposition 2.3].

The starting point for this thesis was the question of whether this categorical approach
can be adapted to the setting of the commuting graph. We want to introduce the compressed
commuting graph A'(R) as a compression of the commuting graph I'(R). Given a unital ring R,
the vertices of A'(R) are equivalence classes of elements of R, with respect to the equivalence
relation defined by a ~ b if and only if elements a and b generate the same unital subring of R.
Two vertices are adjacent if their respective representatives commute in R (see Definition 3.3
for details). Note that we do not exclude the center of R from the graph as in the classical
commuting graph I'(R). It is shown in the thesis that compression based on this relation of
equivalence induces a functor from the category of unital rings and unital ring homomorphisms
to the category of undirected simple graphs with added loops and graph homomorphisms.
The graph A'(R) has significantly smaller number of vertices than T'(R). Additionally, every
vertex of A'(R) corresponds to a unital subring of R generated by one element, so A'(R) yields
information about the set of such subrings of R.

The main goal of this thesis is the complete description of the compressed commuting graph
of the ring M3(GF(p)). As evident from the discussion above this graph has great potential
to be used for further investigation of the ring of matrices. For example, having an explicit
description of the graph may help us solve the isomorphism problem for this graph in the future.

One of the primary difficulties was to describe the set of vertices. We tackle this problem
by considering cases based on the Jordan form of a matrix. We show that matrices that are
compressed into a single vertex always have the same Jordan structure with possible different
eigenvalues. That allows us to describe the vertices case by case, which makes the process
of describing compressed commuting graph more manageable. After the set of vertices is
determined, we carefully investigate the structure of the neighborhood of vertices in each case,
determining how many vertices in the neighborhood are of a certain type. It turns out that this
is crucial for detecting that some parts of the graph are easy to describe while some parts are
not. The core part of the graph consists of vertices obtained by compression of non-derogatory
matrices. We describe this part of the graph by establishing a bijective correspondence between
the set of its vertices and the set of point-line pairs in the projective plain over GF(p). Using
this correspondence, we then describe the edges between the vertices of this part of the graph
using the geometry of point-line pairs.

The rest of the graph is obtained by attaching vertices from other cases, respecting the
neighborhoods of vertices, determined in the previous observations. Finally, this allows us
to give an explicit algorithm for the construction of the entire compressed commuting graph
of the ring M3(GF(p)). As an application of our result, we are also able to construct the
ordinary commuting graph of the ring M3(GF(p)) from the compressed commuting graph,
by blowing-up the vertices into cliques and removing the center of the ring and all the loops.
The construction of I'(M3(GF(p))) was an open problem for several years, so this can also be
considered as a significant result of the research.

Finally, we give here an outline of the thesis. In Chapter 2 we present some basic results



from group theory and matrix theory that we need throughout the thesis. In Chapter 3 we
introduce the compressed commuting graph of a unital ring and discuss its properties. In
particular, we prove that our compression is the best possible for the categorical approach,
since the underlying relation of equivalence is the coarsest one that still induces a functor.
Furthermore, we characterize all infinite unital rings that have a finite compressed commuting
graph.

The problem of construction of A'(Msy(GF(p)) is discussed in Chapter 4. It is detected
that the problem has to be broken into several cases, depending on the Jordan canonical form
of the matrix in question. In every case of the problem, we describe the subset of the set
of vertices belonging to certain case. Combining the results from all the cases, we obtain a
description of the set of all vertices of A'(My(GF(p)). We continue with the discussion on the
set of edges, and prove the interesting fact that there are no edges between vertices represented
by non-derogatory matrices other than loops, see Proposition 4.4. Applying this proposition
we are able to describe the set of edges of A'(My(GF(p)). It turns out that the proposition
mentioned above is of great importance also in the case of the ring of matrices of order 3 and
may be useful even for matrices of higher order.

The description of the graph A'(M3(GF(p))) is given in Chapters 5 — 8. We start with
the description of the set of vertices of A'(M3(GF(p))) in Chapter 5, using the same idea of
breaking into cases as in Chapter 4. For each case separately, we determine the number of
vertices corresponding to a given case and collect the results in a table that describes the set
of all vertices. Next, we investigate the neighborhood of vertices in Chapter 6, going case by
case. As a result we obtain the table containing the number of vertices from each case in the
neighborhood of a vertex of a given type.

In Chapter 7 we use data obtained in Chapters 5 and 6 and construct the subgraph of
AY(M3(GF(p))), induced on the union of the set of vertices from two cases, namely (B) and
(E). An interesting connection between this subgraph and a projective plane is discovered, and
this connection is crucial for the subgraph description. The description of the whole graph
AY(M3(GF(p))) is finalized in Chapter 8. The goal is achieved by investigating how other
types of vertices are attached to the subgraph induced on V) UV(gy. Furthermore, we also give
an algorithm for the construction of the graph A*(Ms3(GF(p))).

In the last chapter, Chapter 9, we apply our results to the study of the usual commuting
graph I'(M3(GF(p))). In particular, we give an algorithm for the construction of the graph
['(M3(GF(p))) from the graph A'(M3(GF(p))) and table from Chapter 5.



Chapter 2

Preliminaries

Since the main problem addressed in the thesis is the description of the compressed commuting
graph of the ring of matrices M3(GF(p)), we first list some basic definitions and theorems from
linear algebra that we will need in the thesis. Although most of the claims hold for matrices of
arbitrary order we will formulate some of them only for matrices of order 3.

Theorem 2.1. The characteristic polynomial of a matric A € M3(GF(p)) has the form
pa(A) = =N +tr(A)N? — (A1 + Agy + Azz)\ + det(A),

where tr(A) is the trace of A, Ay, i =1,2,3, are the co-factors of A and det(A) is the determi-
nant of A.

Proof. Let A € M3(GF(p)) be an arbitrary matrix. Then we have
pa(A) = det(A — AI)

ap;; — A a2 a13
= a1 age — A Q23
asi a32 asz — A

= (a11 — A)(age — A)(azs — A) + ai2a23a31 + ai3a21a3:
- a31(a22 - )\)043 - G32a23(a11 - )\) - azlalz(asz - )\)
= (a11a22 — ann A — ag + A*)(azs — A) + a12a23a31 + a13a21a39
— (31022013 + 31013\ — U32023011 + 32023\ — A21A12033 + A21G12A
= (11022033 — (11033 — U033\ + a33)\2
— a1ag\ + ap A + ag\® — N + a19a03a31 + a13a01a39
— (31022013 + 31013\ — A32023011 + 32023\ — A21A12a33 + G21G12A
==X+ N(ay + asn + as3) — A(@11a33 + a22a33 + A11012 — 31013 — Ag2G23 — A1012)
+ a11a92a33 + A12023031 + A13021A32 — A31022013 — A32023011 — (21012033

= —>\3 + tI"(A))\2 — (An + A22 + Agg))\ + det(A)



This completes the proof. O

Definition 2.2. We say that a non-zero polynomial ¢ € GF(p)|x] is an annihilating polynomial
of matrix A if ¢(A) = 0.

Note that polynomial ¢ € GF(p)[z] can be represented by a polynomial ¢ € Z[z]|. Evaluating
this polynomial in the matrix A over the field GF(p) we have g(A) = ¢(A). So, from the point
of evaluation of polynomials we can consider polynomials to be from Z[z].

The following theorem is known as the Cayley Hamilton theorem.

Theorem 2.3. Every matriv A € M3(GF(p)) is annihilated by its own characteristic polyno-
mial, i.e.,

pA(A) = —A3 + tI‘(A) . A2 + (AH + A22 + Agg) A+ det(A) I =0
Proof. Let A € M3(GF(p)) be an arbitrary matrix. Then we have

ailz aiz as A0
A— M = 21 Q929 Q923 — 0 A

| a31 A32 a33 0 0
= 21 azy — A 23
a31 a32 asz — A

0
0
A
_(111 - A Q12 a13 ]

The adjoint matrix of A — A\I is equal to
(A=X)11 (A=XM)oy (A= A3
Adj(A=A) = [(A=AM)12 (A=) (A=A)s]|,
(A= M)z (A—=A)az (A— )33

where all of the entries are polynomials in A\ with maximal degree 2. For example

21 23
asi asz— A

(A - )\])12 - (—1>1+2

= —(G21(a33 - >\) - a31a23)
= —(CL21CL33 — ag A — a31a23)
= —a91as3 + A\ + az1as3)

= agi A + (as1a3 — ag1ass3),
whose degree is 1, or

age — A 23

A=\ = (—1)H
( Ju=(-1) G s — A

= (a22 - )\)(a33 - /\) — a32G23

2
= A — (ag2 + a33)\ + axass — asass,



of degree 2. So, all the entries in matrix Adj(A — AI) are polynomials with maximal degree 2,
e, Adj(A — XI) € M3(GF(p)[A]). We can collect the coefficients of quadratic terms from all
entries and form a matrix B,, collect the coefficients of linear terms from all entries and form
a matrix B; and collect the coefficients of free terms from all entries and form a matrix By.
Now, matrix Adj(A — AI) can be written as

Adj(A — M) = Bo\? + BiA + By, (2.1)

in other words, Adj(A — \I) € <M3(GF(p))> [A].
From |27, Chapter VII, Proposition 3.7] we know that

Adj(M) - M =M - Adj(M) = det(M) - I.
Taking M = A — A\, we have
(A— M) Adj(A— AI) =det(A— NI, (2.2)
where we recognize the characteristic polynomial on the right side of equation (2.2), i.e.,
(A— M) Adj(A— M) =pa(N)I.
If we use equation (2.1) on the left side of (2.2) and Theorem 2.1 on the right side, we get
(A= N)(BaA? + Bi) + By) = pa(M)I,

AByX? + ABIA 4+ ABy — BoA? — BIN — Bod = (= A + tr(A)N — (Ayg + Ags + Ass) A + det(A)) 1,
—Bo)® + (ABy — B))A? + (ABy — Bo)A 4+ ABy = —X3T + tr( AN — (Aqy + Agy + Asz) A + det(A)].

Considered as an equality in (Mg (GF (p))) [A], the space of polynomials with matrix co-

efficients from Mj3(GF(p)), the last equality is equivalent to the system of four equalities in
M3(GF(p)), namely

—By = —1,
AB, — By = tr(A)],
ABy — By = —(Au1 + A + Ass)l,
ABy = det(A)1.
Multiplying the first equation with A% from the left, the second with A? and third with A, we
get
_A3B, — — A3,
ASB, — A2By = tr(A)A2,
A’B; — ABy = — (A1 + Ag + As3) A,
ABy = det(A)1.



Adding all the right sides, we obtain
— A% +tr(A)A? — (A1y + Ago + Asz) A+ det(A)

which is obviously pa(A). Adding all the left sides, we get 0, hence

which is what we wanted to prove. O
One of the annihilating polynomials is of particular interest for our topic.

Definition 2.4. Polynomial m4 € GF(p)[z] is a minimal polynomial of matrix A if it satisfies
the following conditions:

1) ma(A) =0,
2) my is monic, i.e., the leading coefficient of m, is 1, and

3) if ¢ € GF(p)|x] is any non-zero polynomial that annihilates matrix A, then
deg(ma) < deg(q).

In next proposition we prove a basic property of minimal polynomial.

Proposition 2.5. For every matric A € M3(GF (p)) there exists a unique minimal polynomial
ma.

Proof. First, the set of annihilating polynomials has at least one monic member, because —p 4 is
a monic annihilating polynomial by Theorem 2.3. So, there exists an annihilating polynomial of
the smallest degree. If we normalize this polynomial to be monic, we get a minimal polynomial.
Therefore, A has at least one minimal polynomial m 4. To prove uniqueness, suppose that m}
and m? are two different minimal polynomials of A. Then m!, —m? is non-zero by assumption,
and is an annihilating polynomial of A. But m! and m? have the same degree, and each
has leading coefficient 1, so m!, — m?% has degree less than that of m4. This contradicts the

minimality of the degree of m 4. 0
The following proposition connects minimal and annihilating polynomials.
Proposition 2.6. For any polynomial s we have s(A) = 0 if and only if ma divides s.

Proof. 1f my divides s then clearly s(A) = 0. To prove the converse, we use the result known
as Euclid’s algorithm or "the division algorithm" which implies that for polynomials s and m 4
there are polynomials ¢ and r such that s = ¢-m4 + r and r is either the zero polynomial or
has degree less than that of ma. Now, r(A) = s(A) —q(A)-ma(A) =0—0 =0, so by definition
of minimal polynomial » = 0. Hence my4 divides s. OJ



In next theorem we consider the eigenvalues of a matrix A € M3(GF(p)) as elements of
the algebraic closure of GF(p).

Theorem 2.7. Any eigenvalue of a matrizc A € M3(GF(p)) is a root of its minimal polynomial,
so the minimal polynomial and the characteristic polynomial have the same roots.

Proof. Say ) is an eigenvalue of a matrix A in the algebraic closure GF(p). We want to show

that ma(\) = 0. There is an eigenvector v # 0 in GF(p)3 for this eigenvalue, i.e., Av = Av.
Then A*v = Mo, for all k > 1, so f(A)v = f(A\v for all f € GF(p)[z]. In particular, taking
f(z) =ma(z), we have ma(A) = 0s0 0 = ma(N)v. Thus my(X) = 0. O]

Theorem 2.8. Irreducible factors of the characteristic polynomial of A are factors of the min-
imal polynomial of A and vice versa.

Proof. Any irreducible factor of the minimal polynomial of A is a factor of the characteristic
polynomial since the minimal polynomial divides the characteristic polynomial, as a conse-
quence of Cayley Hamilton theorem and Proposition 2.6. Conversely, if 7(x) is an irreducible
factor of the characteristic polynomial, a root of it, possibly in the extension field, is an eigen-
value and therefore is also a root of the minimal polynomial by Theorem 2.7. Any polynomial in
GF(p)|z] sharing a root with m(z) is divisible by m(z), so 7(z) divides the minimal polynomial.
O

Theorem 2.9. Suppose A € M3(GF(p)) is a block-diagonal matriz with Ay and Ay as the
diagonal blocks, i.e.,
_ A
A=t

Then the minimal polynomial of A is the least common multiple (lem) of the minimal polyno-
mials of A1 and A,.

Proof. Let m4(x) be the minimal polynomial of A, m 4, (z) and m 4, (z) the minimal polynomials
of Ay and As, respectively. According to Definition 2.4 we have m4(A) = 0 which is equivalent

to
mA<A>:mA([A1 AJ): [mA(Al) mA(A2>] B [O 0}'

Last equality implies ma(A;) = 0 and ma(As) = 0. Now, from Proposition 2.6 we have m 4,
divides m4 and my, divides m4, so

lem(ma,, ma,) divides m4. (2.3)

Let f be an arbitrary polynomial such that m,, divides f and my4, divides f. Then we have

=" ] =l o)



so f(A) = 0. By Proposition 2.6 we conclude my(x) divides f. Therefore, if we take
= lem(ma,, ma,) we obtain
ma(z) divides lem(ma,, ma,). (2.4)
From (2.3) and (2.4) we get ma(z) = lem(ma,, ma,). O

Let us recall one of the basic concepts when we talk about commutativity.

Definition 2.10. The centralizer of a matrix A from M, (GF(p)), denoted by €(A), is the
set of all matrices from M,,(GF(p)) which commute with A4, i.e.,

(A) = {X € M, (GF(p)) : AX = X A}.

Note that the intersection of the centralizers of all matrices is the center of the ring of

matrices M3(GF(p)) and is denoted by Z(M3(GF(p))).

Definition 2.11. A non-derogatory matrix is one, whose minimal polynomial equals its char-
acteristic polynomial, up to a sign, while a matrix is derogatory, if they do not coincide.
The following characterization of the non-derogatory matrices is taken from [18].

Theorem 2.12. For a matriz A € M,(GF(p)) the following statements are equivalent:
(i) A is non-derogatory,
(ii) %(4) = (A).

Proof. From [18, Theorem 2.8] it follows that for integer n > 2 and a field F such that |F| > n
a matrix A from M,,(F) is non-derogatory if and only if ¥ (A) = F[A], where F[A] denotes the
unital subalgebra generated by A.

We claim that the above is true even without the restrictions on n and |F|. Suppose n and
[F are arbitrary. First, note that if n = 1 then every matrix A is non-derogatory and satisfies
the equality €' (A) = F[A]. Assume n > 2 and denote by F the algebraic closure of the field
F. Now, let A € M, (F). Denote the minimal polynomial of A over F by m4, and denote the
minimal polynomial of A over F by 4. We claim that

ma = m_A (25)

Suppose ma(r) = 2% 4+ ap_12* 1+ - -+ + ayx + ag where a; are from F. Then ag,ay, ..., ap_1 are
solution of matrix equation ms(A) = 0, where the coefficients of 74 are viewed as variables.
This equation is equivalent to a system of n? linear equations with coefficient in F. Since this
system has a solution in F, the Gaussian algorithm implies that it has a solution also in FF. This
implies that degm 4 < degm 4. Since m 4 is annihilating polynomial of A and m4 is the minimal
polynomial with coefficient in F it holds that 7, divides m4. Combining the two conditions
we get Mg = my.
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Denote by %'(A) the centralizer of A inside M,,(F) and by %(A) the centralizer of A inside

M, (F). We claim that

dimy €¢'(A) = dimz €'(A). (2.6)
The set € (A) is the set of solutions from M,,(F) of the matrix equation XA = AX. This
equation is equivalent to the system of n? linear equations with coefficients in F. Denote the
matrix of the system by M. Then, M is the element of M, (F). Furthermore, dimgz%(A) is
equal to the rank of matrix M. The same conclusions hold for € (A), because M is not changed.
This proves equation (2.6).
Equation (2.5) implies that A € M,,(F) is non-derogatory if and only if A € M,,(F) is non-
derogatory. Furthermore, equations (2.5) and (2.6) imply that the condition ¢’ (A) = F[A] is

equivalent to € (A) = F[A]. The condition ¢'(A) = F[A] is equivalent to dimp € (A) = degm.

By equations (2.5) and (2.6) the later condition is equivalent to dimg¢’(A) = degma. This is
further equivalent to €(A) = F[A].
Since F is not finite, it holds |F| > n, so from [18, Theorem 2.8| that the conditions
(a) A € M, (F) is non-derogatory,
(b) €(A) =F[4],

are equivalent, hence, by the above, the conditions

(c) A€ M, (F) is non-derogatory,

are also equivalent. In our case F = GF(p), so that F[A] = (A),, and the claim follows. O

Definition 2.13. The kernel of a matrix A € M3(GF(p)), also called the null space of a
matrix A, is the kernel of the linear map A : GF(p)® — GF(p)? defined by A, i.e.,

Ker A= {v e GF(p)®: Alv) =0} ={v € GF(p)*: A-v =0}.

Definition 2.14. The image of a matrix A € M3(GF(p)), is the image of the linear map
A:GF(p)® — GF(p)? defined by v — Awv, i.e.,

ImA={A(W):v e GF(p)*} = {Av:v e GF(p)*}.
In what follows we will introduce the Jordan form of a given matrix. We remark that Jordan
form of a matrix is usually defined over the algebraic closure of the base field, but here we will

need the Jordan form over the base field, when it exists.
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Definition 2.15. A Jordan block J) ; is a square matrix over the field GF(p) of the form

Al
Al

Tk = (2.7)

-
N

L d kxk

where the missing entries are all zero.

Definition 2.16. A square matrix J over the field GF(p) is said to be in Jordan form if it is
block diagonal where each diagonal block is a Jordan block.

JAlvkl

nxn

where n = ky + ko + - - - + k; and the missing entries are all zero.
We omit the proofs of the following propositions for the sake of brevity. They can be found
in [31].

Proposition 2.17. Let A be a square matriz over the field GF(p). If the minimal polynomial
of A splits into linear factors over GF(p) then there exists a square matriz J in Jordan form,
similar to matriz A. It is said that A has Jordan canonical form J.

Proposition 2.18. Jordan canonical form of a square matrix A is unique up to the order of

Jordan blocks.

Proposition 2.19. Let A be a square matriz over the field GF(p) and A\ € GF(p) be an
eigenvalue of A. The geometric multiplicity of A, i.e., the dimension of the A\—eigenspace of A,
is equal to the number of Jordan blocks in the Jordan form of the matrixz A.

Proposition 2.20. The size of the largest Jordan block corresponding to an eigenvalue A €
GF(p) of A is exactly the degree of the term (x — ) in the minimal polynomial of A, i.e., the
algebraic multiplicity of eigenvalue X.

Next, we calculate the number of invertible matrices of order n.
Proposition 2.21. The number of invertible matrices in M,,(GF (p)) is equal to
IGL.(GF(p) = (0" = D" —p) - (0" = ")
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Proof. In order for an n xn matrix to be invertible, we need the rows to be linearly independent.
Clearly, we have p™ — 1 choices for the first row. Now, there are p vectors in the span of the
first row, so we have p™ — p choices for the second row. Now, let vy, v9 be the first two rows.
Then the set of vectors in the span of vy, v, is of the form {c;v1 + covs : ¢1,¢c0 € GF(p)}. This
set is of size p?, as we have p choices for ¢; and p choices for ¢,. Thus, we have p™ — p? choices
for the third row. Continuing this way gives the desired formula. 0

Later on, we will need the center of the ring of matrices, so we determine it in next propo-
sition.

Proposition 2.22. The center of M,(GF(p)) consists of the scalar multiples of the identity
matriz, 1.e.,

Z(Mn(GF(p)) = GF(p)I.

Proof. Suppose A € M,,(GF(p)). Let E;; be the matrix whose (¢, j) entry is 1 € GF(p), and
all other entries are 0 € GF(p). Then the equations

Ei,i'A:A'Ei,i> ’i:172,3,
imply that A is necessarily diagonal. Furthermore, equations
Ei’j'A:A'EZ'J, 1§’l§£']§n,

imply that a;; = a;; for all ¢, j € {1,2,...,n}. Consequently, there exists a € GF(p) such that
A=ual. O

Recall that the group of invertible matrices GL,(GF(p)) acts on the set of all matrices
M, (GF(p)) by conjugation. The orbit of a given matrix A with respect to this action is

O(A) ={M € M, (GF(p)) : M similar to A}.
In next proposition we calculate the cardinality of the orbit.
Proposition 2.23. Let A € M,,(GF(p)). Then

‘GLn<GF(p))’
|€'(A) NGL,(GF(p))|

[O(A)] =

Proof. Note that
|O(A)] = {M € M,(GF(p)) : M similar to A}| = [{SAS™': S € GL,(GF(p))}|.

Two invertible matrices S,T € GL,(GF(p)) induce the same matrix SAS™! = TAT! if and
only if T71SA = AT~1S, which is equivalent to T71S € € (A). This is further equivalent to
SH = TH where H = ¢(A)NGL,(GF(p)) is a subgroup of GL,(GF(p)). Hence,

|GL(GE(p)|
|€(A) N GL.(GF(p))|

|O(A)| = |GL(GF(p))/H| =
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Next proposition gives some of the similarity invariants that will be used in our arguments.

Proposition 2.24. Suppose A and B are matrices over the field F. If A and B are similar
matrices then

1) dimKer A = dim Ker B,
2) A and B have the same eigenvalues with the same algebraic and geometric multiplicities.

Proof. 1) As B is similar to A there exists an invertible matrix S such that B = SAS™!. Last
equation is equivalent to S~™'B = AS~!. Observe that if x € Ker B then S~'z € Ker A.

We claim that if {v;, v, ... v;} is a basis for Ker B then the vectors S™lvy, S~ vy, ..., S™
are linearly independent. Suppose ¢; € GF(p) for each i = 1,2,..., k are such that

1Sy + oSy 4+ -+ ST = 0.

By linearity we can move the constants in-between the matrix and the vectors and then by the
linearity again we can pull S~! out so we get

5_1(011}1 + CoUy + - - - ckvk) =0.

However, S~! is invertible so if we multiply by S we get

C1V1 + CoUg + -+ - CLU = 0.
Since vy, v9, ... v, are linearly independent, we have ¢; = ¢ = -+ = ¢ = 0, so the vectors
S~lv, Sy, ..., Sl are linearly independent. Furthermore, vectors S~™tvy, S™ g, ..., S
belong to Ker A, which implies that

dim Ker B < dim Ker A. (2.9)
Similarly, by reversing the roles of A and B we get the other inequality

dim Ker A < dim Ker B. (2.10)
Conjunction of inequalities (2.9) and (2.10) is equivalent to equality 1).

2) Note that pg(x) = det(B—AI) = det(SAS™'—SAIS™) = det(S(A—AI)S™') = det(A—

M) = pa(z). This proves that every common eigenvalue of A and B has the same algebraic

multiplicity. Using statement 1) it is obvious that corresponding geometric multiplicities are
equal. O
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Chapter 3

Compressed commuting graph of a unital
ring

We will assume throughout this chapter that R is a unital ring with identity element 1. In
what follows, we will introduce the commuting graph I'(R) as defined in [2| and the compressed
commuting graph of unital ring A'(R) as defined in [13].

Definition 3.1. A commuting graph of a unital ring R is an undirected graph I'(R) whose
vertex set is the set of all non-central elements of R and there is an edge between two different
elements a and b if and only if ab = ba.

Definition 3.2. A unital subring of R generated by an element a from R will be denoted by
(a)y, ie.,

()1 = {q(a) | ¢ € Z[z]}, (3.1)
where Z[z] denotes the ring of polynomials with integer coefficients and in the evaluation of
q(a) the constant term is multiplied by the identity element 1.

We introduce an equivalence relation ~ on R defined by a ~ b if and only if (a); = (b)1,
and denote the equivalence class of an element a € R with respect to relation ~ by [a];. By
definition [a]; consists of all single generators of the ring (a);.

Definition 3.3. A wunital compressed commuting graph of a unital ring R is an undirected
graph A'(R) whose vertex set is the set of all equivalence classes of elements of R with respect
to relation ~ and there is an edge between [a]; and [b]; if and only if ab = ba.

We need to prove that edges in A'(R) are well defined. Suppose that [a]; = [d']1, [b]: = [b']1,
and ab = ba, then @’ € (a); and V' € (b)1, hence, a’, b’ € (a,b);, the subring generated by two
elements a and b. But since a and b commute, (a,b); is a commutative ring, hence o’ and ¥’
commute as well. It should be remarked that central elements of R are not excluded from the
graph A'(R) like in the usual commuting graph I'(R). Furthermore, loops are allowed in A'(R),
in fact, every vertex of A'(R) has a single loop on it.
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In [13] the authors also introduce a non-unital version of the compressed commuting graph,
denoted by A(R), however, here we will be interested in unital version only, hence, we will often
omit the adjective "unital" and simply speak about compressed commuting graph. The reader
can find the connection between the two versions of the graph in the [13].

Note an important fact that each vertex of A'(R) corresponds to a subring of R generated
by one element. This means that we could equivalently define the compressed commuting graph
of R as an undirected graph whose vertex set is the set

V(A'(R)) = {{a) | a € R},

the set of all subrings of R generated by one element, and vertices (a); and (b); are connected
by an edge if and only if ab = ba.

The mapping A! can be extended to a functor A! from the category Ring! of unital rings
and unital ring homomorphisms to the category Graph of undirected simple graphs that allow
loops and graph homomorphisms. For a ring homomorphism f: R — S, where R and S are
unital rings, we define a graph homomorphism A*(f): A'(R) — A'(S) by AY(f)([r]1) = [f(r)]:.
We need to verify that the map A'(f) is well defined. If [r]; = [r]; then there exist polynomials
p,q € Z[z] such that v’ = p(r) and r = ¢(r’). Hence, f(r') = p(f(r)) and f(r) = q(f(r")) and
consequently [f(r)]y = [f(")];. Furthermore, A'(f) maps connected vertices to connected
vertices since ab = ba implies f(a)f(b) = f(b)f(a). So the map A'(f) is indeed a graph
homomorphism. Here the zero ring R = 0 is considered as a unital ring with 1 = 0. It is easy
to check that A'(idg) = ida1(g) for any ring R and A'(f o g) = A'(f) o A'(g) for all unital ring
homomorphisms f: S — T and g: R — S. This proves the following.

Proposition 3.4. The mapping A': Ring' — Graph that maps a unital ring R to the graph
AY(R) and a ring homomorphism f to the graph homomorphism A'(f) is a functor.

The following gives the motivation for choosing the particular equivalence relation in Def-
inition 3.3. It implies that, at least on finite unital algebras, the relation ~ is the coarsest
relation that still induces a functor.

Theorem 3.5. For each unital ring R let ~r be an equivalence relation on R such that the
family {=~r | R a unital ring} induces a well defined functor F: Ring' — Graph in the
following way:

(i) For each unital ring R the vertices of F(R) are equivalence classes [r]~, of elements of

R with respect to =g and there is an edge between [a]~, and [bl~, if and only if ab = ba.

(17) For each unital ring homomorphism f: R — S, where R and S are unital rings, the graph
homomorphism F(f): F(R) — F(S) is given by F(f)([r|~,) = [f(r)]~s for allr € R.

Then for any finite unital algebra A and for any a,b € A the condition a ~4 b implies a ~ b.
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Proof. Let A be a finite unital algebra. Since it is finite, it is an algebra over a finite field F,
the characteristic of IF is a prime p, and its prime field is GF(p). Thus, we may consider A as a
finite dimensional algebra over GF(p). Hence, the algebra E' = Endgpp) (A) of all GF (p)-linear
transformations on A is isomorphic to a matrix algebra M, (GF(p)), where n = dimgp) A.
Let L: A — E be the left regular representation of A given by L(a) = L, for all a € A, where
L, denotes left multiplication by a. Now suppose a =4 b holds in A. Since L is a unital ring
homomorphism, item (i7) implies that L, ~g L,. The fact that edges in item (i) must be
well defined implies € (L,) = € (Ly). Since E is isomorphic to a full matrix algebra, it follows
from the Centralizer Theorem [30, p. 113, Corollary 2| that this is equivalent to GF(p)[L,] =
GF(p)[Ly), where GF(p)|L,) denotes the unital GF(p)-algebra generated by L, see |18, Lemma
2.4]. But GF(p) = Z, is a factor ring of Z, so that GF(p)[L,] = (L,)1 and consequently
(La)1 = (Lp)1. Hence, there exist polynomials P, € Z[x] such that L, = P(L;) = Lpg) and
Ly = Q(L,) = Lg(a). Applying these transformations to 1 € A gives a = P(b) and b = Q(a),
hence (a); = (b); and a ~ b. O

Since the motivation for the compression is to make a graph smaller it is interesting to ask
whether an infinite unital ring can have a finite compressed commuting graph. In the paper
[14] it is shown that this is indeed possible and it is also possible to classify all such rings.

Theorem 3.6. If R is an infinite unital ring, then either |V (A'(R))| = |R| or R is isomorphic
to a unital semidirect product Z[L] x I for some positive integer m and some finite Z[-]-ring
I. In the later case we have |R| = Ry and [V (AY(R))| < No.

We omit the proof of the theorem and the reader can find it in [14]. In this thesis our focus
will be on finite rings of matrices over GF(p) of orders 2 and 3. In next chapter we will start
with matrices of order 2.
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Chapter 4

Compressed commuting graph of

Ms(GF(p))

Since any similarity is a ring isomorphism, it induces a graph isomorphism, see Proposition 3.4.
This means that similar matrices will behave the same way in the compressed commuting graph
construction process. When considering a specific matrix we can consider its nicest possible
form which will be the Jordan canonical form in the case when all the zeros of the characteristic
polynomial lie in the field GF(p) and if not we will use the companion matrix instead.

Therefore, the problem of describing the vertices of the compressed commuting graph of the
ring My(GF(p)) will be divided into the following cases depending on how the characteristic
polynomial of a matrix splits over the field GF(p).

Case (A): Diagonalizable matrices with one double eigenvalue A € GF(p), i.e., similar to

A0
A= [0 A] .
Case (B): Diagonalizable matrices with two different eigenvalues A and p from GF(p), i.e.,
similar to
A0
A= [O M]
Case (C): Non-diagonalizable matrices with one double eigenvalue A € GF(p), i.e., similar to
Al
A= [0 A] .

Case (D): Matrices whose characteristic polynomial is irreducible over GF(p), i.e., with no
eigenvalues in the field GF(p).

We will refer to matrices from case (X) as matrices of type (X).
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Proposition 4.1. Suppose A and B are two matrices from My(GF(p)). If (A)1 = (B)1 then
A and B are of the same type.

Proof. First note that degm, = degmp. We consider two cases, depending on the degree of
m4. Assume first that degmy = 1. In this case matrix A is clearly a scalar matrix. Then
(A)1 = GF(p)I, so B is also scalar matrix and this means that both of them are of type (A).
Now assume that degm, = 2. Further, we will discuss two subcases, depending whether m 4
splits over GF'(p) or not.

Assume first that m 4 splits. It means that matrix A is similar to a matrix in Jordan form.
Without lost of generality we can assume that A is in Jordan form. As (A); = (B); there
exist polynomials ¢ and r such that B = ¢(A) and A = r(B). This implies that the number of
different eigenvalues is the same for both matrices. If the mentioned number is 2 then matrices
are both diagonalizable so they are of type (B). On the other hand, if the number is 1 then
matrix A and Jordan form of matrix B have only one Jordan block, i.e., they are of type (C).

Finally, assume that m 4 does not split, so m 4 is irreducible and A is of type (D). Eigenvalues
of A are not in GF(p) so as A = r(B), eigenvalues of B are not in the GF(p) either, i.e.,
pp = mp is irreducible, which means that B is of type (D) as well. This completes the proof.

O

From Proposition 4.1 we know that all matrices that will be compressed into one vertex are
matrices of the same type. This means that we can speak about the type of a vertex in the
compressed commuting graph.

Similarly as for the matrices from My(GF(p)) the breaking into cases will also be done for
matrices from M3(GF(p)) in Chapter 5. The following definition and proposition are valid for
both n =2 and n = 3.

Definition 4.2. Define V(x) C V(AY(M,(GF(p))) as the set of vertices of type (X), where
n=2orn=3.

Proposition 4.3. Suppose we have a vertezx of type (X), represented by a matriz A of order n,
where n = 2 or n = 3. Assume that O(A) intersects every vertex of type (X) and let

wa = [{(A)1 NO(A)]. (4.1)
Then

_OA)] _ |GLGF(p))
wa  EA) N GLGF(p)]-wa

Vix)l (4.2)
Proof. As shown in the proof of Proposition 2.23, some of the matrices similar to the matrix
A lie inside the subring (A);, but some of them do not. Those which do not will be generators
of the isomorphic copies of the subring (A);. To count the number of vertices of type (X), we
will need to count how many matrices similar to A lie in the subring (A);.

Let M € O(A) be arbitrary. Then M is similar to A, i.e., there exists an invertible matrix S
such that M = SAS™!. The conjugation mapping Y — SY S~ is bijection from set (A); NO(A)
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to the set (M), NO(A), so all of the sets (M), NO(A), M € O(A), are of the same cardinality
and this cardinality is equal to wa.

Note that any W from (M); N O(A) is automatically a generator of (M);. This is because
W is similar to A and hence similar to M, so three of them have the same degree of minimal
polynomial, see Proposition 2.24. Since W is from (M); this implies that W is a generator of
(M),. Hence, matrices in (M); N O(A) are compressed into the same vertex.

It follows that the number of vertices obtained from matrices of type (X) is equal to

O(A
Vil = 22
A

Equation (4.2) now follows from Proposition 2.23. O

Now, we consider the cases and calculate the number of vertices in A'(My(GF(p))) of each
type.

Case (A): Diagonalizable matrices with one double eigenvalue A € GF(p), i.e., similar to
A0
!
Note that matrix A is a scalar matrix, i.e., A = A-I. For every matrix B similar to A = AI there
exists invertible matrix S such that B = SAS™! = SAS~! = ) i.e., there are no matrices
of type (A) except of p scalar matrices. No two of them are similar as they have different
eigenvalues.

The minimal polynomial of A is m4(z) = x — A, which is of degree 1. This fact can be used
to find general form of the element of the subring (A);. Namely,

(A1 ={q(A) : g € Z[z]} = {q(A) : ¢ € GF(p)[z]}
= {q(A) : deg(q) =0} =GF(p) - I,

This means that subring consists only of matrices of type (A), and subring contains every
matrix from case (A).

As we discussed all of the previous calculations for arbitrary A = A1, every matrix from the
set GF(p)- I is generator of the unique subring GF(p) - I. In other words, there are no proper
subrings of the subring (A)y, i.e, all of the matrices from this case will be compressed into one
point in A*(M(GF(p))), i.e.,

Vil = 1.

Case (B): Diagonalizable matrices with two different eigenvalues A\, u € GF(p), i.e., similar

B

to
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From the Jordan canonical form and Theorem 2.7 we see that my4 = p4, i.e., all the matrices
from this case are non-derogatory. This means that matrix A generates a subring of dimension
2. As every matrix in the subring (A); is clearly diagonal, and the space of all diagonal matrices
is of dimension 2, the ring (A); is precisely the ring of diagonal matrices. So, the general form
of matrix B from the subring (A); is

B = [a b} ,where a and b are arbitrary from GF(p). (4.3)

Obviously, if a = b such a matrix will generate a subring of type (A). Matrix B is a generator
of the subring (A); if and only if the minimal polynomial of B is of the same degree as the degree
of the minimal polynomial of A and this is 2. From (4.3) we see that the degree of minimal
polynomial of B will be 2 if and only if a and b are different. So, the number of generators of
(A); is p(p — 1), and these matrices will be compressed into one point in A*(My(GF(p))).

Using Proposition 4.3 we will now calculate [V(p)|. Let us prove that the assumption of the
proposition is fulfilled. Let Y be a arbitrary matrix of type (B). This means that there exists
an invertible matrix S such that

SY St — P A} )
m

By equation (4.3) we know that the subring (A); = (A);. Hence,
() = (STTAS), = STHANS = STHAWS = (STLAS),

ie.,

S7TAS € (Y); N O(A).

This proves that O(A) intersects every vertex of type (B).
As matrix A is non-derogatory we know from Theorem 2.12 that

C(A) = (A), = { [a b} La,be GF(p)}. (4.4)
A matrix from %(A) is invertible if and only if @ # 0 and b # 0. So,
[€(A) NGLy(GF(p))| = (p — 1)*. (4.5)

To compute wy let M € (A); N O(A). From (4.3) we know that

-l )

and since M is similar to A, we get {a,b} = {\, u}. This means that (a,b) is a permutation of
(A, ). Hence,
wa = (A1 NO(A)| =2!=2.
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By the Proposition 4.3 we conclude that the number of vertices obtained from matrices of type
(B) is equal to
_10(4)] _ |GLy(GF(p)) (»* = D(@* —p)

| B 1
= TR ACLCFG - wx 12 2l (49

Case (C): Non-diagonalizable matrices with a double eigenvalue A € GF(p), i.e., similar

A:B ﬂ

From the Jordan form we can see that

to

ma(z) = pa(z), (4.7)
which means that
dim(A); = deg(my) = 2.

We will use this fact to find general form of an element of the subring (A);.
Namely,
(A); = Lin{l, A} = Lin{I, A — A} = Lin{/, E »}.

As matrices I and FE o are linearly independent, they form a basis of the subring (A);, so we

have
(A = { {“ 2} Labe GF(p)}. (4.8)

Next, we find the generators of (A);. Let B € (A); be arbitrary. Obviously, B = [*?] and
(B)1 C (A);. Taking into account that (B); = (B — al); we have

(B), = Lin{I, B — al} = Lin {1, [0 8} }

So, B will be a generator of (A); if and only if b # 0. We conclude that out of p? elements of
(A)1 there are p(p — 1) generators of (A);.

As in case (B), we now show that the condition of Proposition 4.3 is fulfilled. Let Y be an
arbitrary maatrix of type (C). This means that there exists an invertible matrix S such that

syst=|* 1224
)

Using equation (4.8) we have (A); = (A);, hence

~

(V) = (S7TAS), = STHANWS = STHANS = (STLAS),.
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Obviously, this implies that O(A) intersects subring (Y');, which means that condition of Propo-
sition 4.3 is fulfilled.
From (4.7) we see that matrix A is non-derogatory, which means that

A matrix from €(A) is invertible if and only if a # 0. So,

[€(A) N GLAGF(p))| = (p = 1) -p=(p = Dp. (4.9)
Next, we compute wa. Let M € (A); N O(A). From (4.8) we know that
M:{ab}
a

Since M is similar to A we get a = A and M has the same degree of minimal polynomial as A,
which is equivalent to b # 0. Combining the two conditions, we get

wa=|[(ALNOA)=1-(p—1)=(p—1).
By Proposition 4.3 we obtain that the number of vertices of type (C) is equal to

_ 10| |GLs(GF(p)) _ =)@’ -p)

B |
Vol = = = B N CL(GF W) wx  (p=DTp- = 1)

=p+1 (4.10)

Case (D): Matrices with no eigenvalues in the field GF(p), i.e., matrices whose charac-
teristic polynomial is irreducible over GF(p). Such matrices have two different eigenvalues in
algebraic closure of GF(p).

Let ¢ € GF(p)[x] be a monic irreducible polynomial of degree 2 and write it in the form

q(z) = 2% + a1z + ap. (4.11)

Obviously, ag # 0, otherwise it can be factorized as x(z+ay). For polynomial ¢ we can construct
its companion matrix as

A= [g :gﬂ . (4.12)

For this matrix the characteristic polynomial is exactly p4 = ¢. Note that any matrix with
characteristic polynomial p4 is similar to the matrix A.
From Theorem 2.8 we infer
ma(x) = pa(z), (4.13)

i.e., all matrices of the case (D) are non-derogatory. This means that
C(A) = (A). (4.14)
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Obviously, m4 is an irreducible polynomial, so it follows from [26, Theorem 4.5.11] that the ideal
(ma(z)) is a maximal ideal of GF(p)[x]. By Theorem 4.4.2 from the same book the quotient
ring GF (p)[z]/(ma(zx)) is a field.
Define the mapping
@ : GF(p)[z] = (A),

by

Then ¢ is a ring homomorphism and
Ker g = (ma(x) = ma(z) - GF(p)[a].
Homomorphism ¢ is obviously surjective so the first isomorphism theorem implies
(Ah = GF(p)[z]/(ma(z)). (4.15)

Combining (4.14) and (4.15) we conclude that %' (A) is a field, so we easily detect invertible
elements in ¢’(A) as a non-zero matrices, i.e.,

|€(A) N GLy(GF(p))| = p* — 1.

As dim(A); = deg(m,) = 2, we see that the cardinality of the subring (A); is p* as well as the
field on the right side. So,
(A)1 = GF(p*).

The only subfield of GF(p?), and hence the only subring of (A);, is isomorphic to GF(p).
So, the number of generators of (A4); is p* — p.

In this case we will not rely on Proposition 4.3 but we will calculate the number of vertices
in a different way. First, we calculate the size of the orbit O(A). By Proposition 2.23 we have

_ |G Ly (GF(p))| - -p
O = ZncmGre) = p#-1 PP

From the above we see that orbit of every matrix of type (D) contains companion matrix of
an irreducible polynomial. We claim that it contains exactly one companion matrix. To prove
it, suppose C} and (5 are companion matrices of two monic irreducible polynomials p; and ps
of degree 2, in the same orbit. As 4 and C5 are from the same orbit, they are similar, so
they have the same characteristic polynomial, i.e., p; = pey, = po, = p2. This is equivalent to
C:7 = (5, which proves our claim.

We conclude that the number of orbits of matrices of type (D) is equal to the number
of monic irreducible polynomials of degree 2, which is equal to 7%, see |33, Theorem 3.25].
Hence, the number of matrices of type (D) is equal to

P 2—19"0(14)’ _p22—p_(p2_p) _ (p2;p)2'
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If we divide this number by the number of generators of the subring of type (D), calculated
above, we get the number of vertices of type (D), i.e.,

(p* —p)* L,
27 —p 2 P 1

Although we do not need w4, as in previous cases, we calculate it anyway. Let B be the
matrix from the subring (A); similar to A. Matrices are similar if and only if there exists
an invertible matrix S such that B = SAS~!. In this case the conjugation 7 : (A); > (A);
defined as 7(X) = SXS7! is a field isomorphism with 7(A) = B. On the other hand, if ¢
is an automorphism of (A); then ¢(A) has the same minimal polynomial as A. Since my4 is
irreducible, this means that ¢(A) is similar to A. Hence,

wa = [{(A) : ¢ € Aut((A)1) }| = | Aut(GF(p?))|.

Vipy| =

From [33, Theorem 2.21] we see that ws = 2. Note that the cardinality of the set of generators
of a subring of type (D) is equal to the product of the number of orbits and wy, i.e, p* —p =

@ -2, which proves that every subring of type (D) intersects every orbit. This means that
the assumption of the Proposition 4.3 actually holds for case (D) as well.

In the Table 4.1 we summarize the results from cases (A) — (D), to have a global overview
of the compression.

Table 4.1: Vertices of AY(Mo(GF(p))).
CASE ‘ Number of vertices Number of matrices compressed dim(A),

(A) 1 p 1
(B) %(p +1)p p(p—1) 2
(€) P +1 p(p—1) 2
(D) 5(192 —p) PP —p 2

Note that now we can do a quick check if the numbers in Table 4.1 are correct. We first
calculate the number of matrices of each type and the sum of all those numbers should be
equal to the number of all matrices, which is p*. The number of matrices for each case is the
product of the number of vertices and the number of matrices compressed into one vertex. We
have p matrices of type (A), $p* — £p® matrices of type (B), p* — p matrices of type (C) and
%p‘l —p?+ %pQ matrices of type (D). The sum of this numbers is exactly p*.

Before we prove an important proposition, which will help us finish the construction of
AY(My(GF(p))) recall from graph theory that we denote by K, the complete graph on n
vertices without any loops and by K, the complete graph on n vertices with all the loops.
If G and H are two graphs we denote by G U H their disjoint union, by ¢tG a union of ¢
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copies of G and by G V H their join, i.e. the graph with V(G Vv H) = V(G) U V(H) and
E(GVH)=EG)UEH)U{{a, b} |acV(G),be V(H)}.

Proposition 4.4. Let n be an arbitrary positive integer. Suppose u and v are two vertices which
correspond to two non-derogatory matrices A and B from M, (GF(p)), respectively. There
exists an edge between u and v if and only if u = v, i. e., the edge is a loop.

Proof. If there is an edge between u and v, that means that AB = BA. Since A is non-
derogatory it holds that (A); = €(A). Since B commutes with A, it follows that B belongs to
(A)1, so (B)1 C (A)y. Similarly, (A); C (B)1, so we have (B); = (A); which means v =v. O

Note that all vertices of the compressed commuting graph of My(GF(p)), except the one
created by compression of the subring of scalar matrices, are represented by non-derogatory
matrices. From Proposition 4.4 we conclude that there are no edges between vertices of type
(B), (C) and (D) except loops and that the vertex created by compression of the subring of
scalar matrices is connected by an edge with itself and with all the other $(p + 1)p vertices of
type (B), p+1 vertices of type (C') and $(p* — 1) vertices of type (D). This proves the following
theorem.

Theorem 4.5. Let p be a prime number. Then the unital compressed commuting graph of the
ring Mo(GF (p)) is a star graph with p* + p + 1 leaves and all the loops, i.e.,

A (Mo(GF(p) = K7V ((p* +p + 1)KT). (4.17)

We remark that Theorem 4.5 is a special case of the following more general theorem, proved
in [13, Theorem 21|, which describes the unital compressed commuting graph of a ring of
matrices of order 2 over a general finite field. Here d(n) is the number of all positive divisors
of a positive integer n and o(n) is the sum of all positive divisors of n.

Theorem 4.6. Let n be an integer, p a prime, and GF(p") the field with p" elements. Let

(n) = d(n)* —d(n)+o(n)—1; ifp=2 andn is even,
T d)? = d(n) + o(n); ifp>2 orn is odd,

b(n) = Z ];Z—:i, and c¢(n) =d(2n) —d(n).
dn

Then the unital compressed commuting graph of the ring Mo(GF (p™)) is

7 K§<n>> :

p2n

A (Mo(GF(p"))) = K, V <p2n+pn Kooy U (0" + 1)Ky U

2

Note that in our case n =1, so a(1l) =b(1) = ¢(1) =d(1) =1 and
P —p
2

P+
2

+(p+1)+ =p’+p+1
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Chapter 5

Vertex set of AN (Ms(GF(p)))

Similarly as in the case of 2x 2 matrices the problem of describing the vertices of A*(M3(GF(p)))
will be divided into the several cases depending on how the characteristic polynomial of a matrix
splits over the field GF(p).

Case (A): Diagonalizable matrices with a triple eigenvalue A € GF(p), i.e., similar to

A
A= A
A

Case (B): Diagonalizable matrices with two different eigenvalues A\, u € GF(p), i.e., similar to

A
A= 1
i

Case (C): Diagonalizable matrices with three different eigenvalues \, i, v € GF(p), i.e., similar
to

A
A= I

1%

Further cases consist of non-diagonalizable matrices.
Case (D): Matrices with a triple eigenvalue A\ € GF(p) with minimal polynomial (x — \)?, i.e.,
similar to

Al
A= Al
A
Case (E): Matrices with a triple eigenvalue A € GF(p) with minimal polynomial (z — \)?, i.e.,
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similar to
Al
A= A
A

Case (F): Matrices with two different eigenvalues A\, u € GF(p) with minimal polynomial
(x — N)?(x — p), i.e., similar to

A=
I

Case (G): Matrices whose characteristic polynomial is irreducible over GF(p), i.e., with no
eigenvalues in the field GF(p).

Case (H): Matrices whose characteristic polynomial is of the form p(z) = (x—\)(z*4+ a1z +ay)
where the second factor is irreducible over GF'(p).

Proposition 5.1. Suppose A and B are two matrices from M3(GF(p)). If (A)1 = (B); then
A and B are of the same type.

Proof. First note that degma = degmp. We denote this degree by d. As (A); = (B)1 we know
that there exist polynomials ¢ and r such that B = ¢(A) and A = r(B). This implies that
matrices A and B have the same number of distinct eigenvalues in GF'(p). We will denote this
number by e. Note that 0 < e < d < 3. Now, we consider the cases based on the values of d
and e.

Note that the pair (d,e) = (1,0) is not possible as linear polynomial always has a zero in
the field, i.e., if d = 1 then e = 1. Furthermore, the pair (d,e) = (2,0) is not possible because
it would mean that the characteristic polynomial has a double zero \;. Since this is a zero of
minimal polynomial it is an element of GF(p?) \ GF(p). But then the second zero Ay of the
minimal polynomial must be double as well, which is not possible.

If (d,e) = (1,1) then matrices A and B are of type (A). Similarly, if (d,e) = (2,1) they
are of type (E), if (d,e) = (2,2) they are of type (B), if (d,e) = (3,0) they are of type (G), if
(d,e) = (3,2) they are of type (F), if (d, e) = (3, 3) they are of type (C). Finally, if (d,e) = (3, 1)
we distinguish two subcases. If matrix A has all eigenvalues in GF'(p) then so does B because
B = q(A). In this case both matrices are of type (D). On the other hand, if A has an eigenvalue
a ¢ GF(p) then so does B, because a = r(f3) for some eigenvalue 5 of B and clearly 5 ¢ GF(p).
So, both matrices are of type (H). O

Now, as a first step in the description of the compressed commuting graph of the ring
M3(GF(p)) we will calculate the number of vertices of the compressed commuting graph for
each case separately. Note that from Proposition 5.1 we know that compression is possible only
within the certain type.
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Case (A): Diagonalizable matrices with a triple eigenvalue A € GF(p), i.e., similar to

A=

o O >
o > O
> O O

The minimal polynomial of matrix A is my(z) = 2 — A, which means that (A); = Lin{I},
i.e., the subring (A); consists only of p scalar matrices. Every scalar matrix from the subring is
a generator of the subring. In other words all the matrices from the subring will be compressed
to one vertex in A*(M3(GF(p))).

Let B be a matrix from M3(GF(p)) similar to A = Al. This means that there exists an
invertible matrix S such that

B=S1A4.89=8"1 " A-S=)\S"'.T-S=)\5"1.S=)\=A.

So, there are no matrices similar to A = ol apart from A itself, and the subring (A); is unique
subring of type (A), hence, in the A'(M3(GF(p))) there is only one vertex of type (A), i.e.,

Vil =1.
Case (B): Diagonalizable matrices with two different eigenvalues A\, u € GF(p), i.e., similar
to
A
A= 1

L

The minimal polynomial of matrix A is m4(x) = (x — \)(x — u), which is of degree 2, so we
know that dim(A); = 2. This fact can be used to find the general form of an element from the
subring (A);. Namely,

(A1 =A{p(A) : p € Z[z]} = {p(A) : p € GF(p)[z]}
= Lin{/, A} = Lin{l, A — ul}
= Lln{], (/\ — ,U)Ell} = Lin{EH, E22 + E33}

_ { 3 ‘o, B € GF(p)}. (5.1)
B

Now we calculate the number of generators of (A);. Let a matrix B € (A); be arbitrary. Note
that B is a generator if and only if its minimal polynomial is of degree equal to the degree of
the minimal polynomial of matrix A, which is equal to 2. As the general form of B is visible
from (5.1), B is a generator if and only if § # a. So, the number of generators of (A); is
p(p — 1). These matrices will be compressed into one vertex in the A'(M3(GF(p))). On the
other hand, if 5 = « then (B); is the ring of scalar matrices, which is the only proper subring
of (A); and was discussed in case (A).
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To calculate the cardinality of Vp) we will use the same strategy that was used in the case
of matrices of order 2, so we first show that the assumption of Proposition 4.3 is satisfied. Let
Y be an arbitrary matrix of type (B). This means that there exists an invertible matrix S such
that R

A ~
SYys— = M =A

By equation (5.1) we know that the subring (A

-~

m
> (A)1. Hence,
(V)1 = (ST1AS), = STHA),S = 5~

LAY S = (STTAS),, (5.2)

i.e.,

STIAS € (V)1 N O(A).

So the assumption is satisfied.

abc
Next, we determine the centralizer ¥ (A). A matrix X = d }EL f is in €' (A) if and only if
g 7
a b c A ] a b c
d e f|- 0 = d e f
g h 1 q g h 1
a\ bu cu )\a )\b Ac
dA ep fp| = |pd pe pf
gA hpip] o pg phoopi
This matrix equation is equivalent to the system of equations (over the field GF(p))
b = b,
cp = Ac,
d\ = ud,
gA = pg.

Taking into account that u # A, the solution is b = ¢ = d = g = 0 while a, e, f, h, i are arbitrary
elements of the field GF(p). So, the centralizer of the matrix A is

C(A) = { Z f caye, fihyi € GF(p)}. (5.3)

From Proposition 2.21 we know that |GL3(GF(p))| = (p* — 1) - (p* — p) - (p* — p?). Now we will

calculate the number of invertible matrices in the centralizer of A. Matrix | ¢ f| is invertible
(]

if and only if @ # 0 and matrix [Z J: } is invertible, hence

[€(A) N GL3(GF(p))| = |GLI(GF(p)] - |GL(GF(p))| = (p = 1)(0* = D(* —p).  (5.4)
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We will now prove that we have wy = 1. Let M € (A); N O(A) be arbitrary. As M € (A),
we infer from the equation (5.1) that M = [ B 6] for some a, B € GF(p). Since M € O(A), it

must have the same eigenvalues with the same algebraic multiplicities as matrix A. So a = A
and 8 = u, i.e., M = A, which proves our claim. By Proposition 4.3 the number of vertices of
type (B) is

_ o) _ |GLs(GF(p))

Vi | = A A Al A

|
wa  [CA)NGL(GFp)|-wa  (p=1)(* = D> - p)-

)1 =" +p+ 1)p*

Case (C): Diagonalizable matrices with three different eigenvalues A\, u,v € GF(p), i.e.,
similar to

A0 O
A=10 pu O
0 0 v

Note that in this case p must be greater then or equal to 3 because if p = 2 a matrix cannot
have three different eigenvalues in GF(p).

From the Jordan canonical form we see that m4 = pg, i.e., all the matrices from this case are
non-derogatory. This means that matrix A generates subring of dimension 3. As every matrix
in subring (A); is clearly diagonal, and the space of all diagonal matrices is of the dimension
3, the ring (A); is precisely the ring of diagonal matrices. So, the general form of the matrix
B from the subring (A); is

a
B = b ,where a, b and ¢ are arbitrary from GF(p). (5.5)
c

Obviously, if @ = b = ¢ such a matrix generates subring of type (A). If b=c#a,a=b#c
or a = ¢ # b matrix B generates a subring of type (B). The matrix B € (A); is a generator
of subring (A); if and only if the minimal polynomial of B is of degree the same as degree of
minimal polynomial of A and this is 3. From (5.5) we see that degree of minimal polynomial
will be 3 if and only if a,b and ¢ are different. So, the number of generators is p(p — 1)(p — 2).
These matrices will be compressed into one vertex in the A'(M3(GF(p))).

Note that subring from equation (5.5) does not depend on the exact values of A, 1 and v. This
implies that we can use the same argument as in case (B) (see equation (5.2)) and conclude
that the orbit of A intersects every vertex of type (C). This means that the assumption of
Proposition 4.3 is satisfied.

As matrix A is non-derogatory we know that

C(A) = (A) = { ' b ca,b,c € GF(p)}. (5.6)



Matrix from % (A) is invertible if and only if a # 0, b # 0 and ¢ # 0. So,
[€(A) NGLy(GF(p)| = (p — 1)*. (5.7)

Note that the subring from equation (5.5) is independent of the specific values of A, u and
v. Hence, we can use similar arguments as in case (B) to conclude that O(A) intersects any
vertex of type (C). So, again it is sufficient to consider O(A) to find the number of vertices of
type (C).

Let M € (A); N O(A). From (5.5) we know that

a
M = b
c

and since M is similar to A we get {a, b, c} = {\, p, v}. This means that (a, b, ¢) is a permutation
of (A, i, ). Hence,
wa = [(A)1 NO(A)| =3l =6.

By Proposition 4.3 we conclude that the number of vertices of type (C) is equal to

Vi | = 1O _ [GLs(GF(p))] _ @ =D’ - -1’
T wa T A NGL(GF(p))] - wa (b =16 (5:8)
= %(p2 +p+1p’(p+ 1)

Case (D): Matrices with a triple eigenvalue A € GF(p) with minimal polynomial (z — \)3,

i.e., similar to

Al
A= Al
A
From the Jordan form we can see that
ma(z) = pa(z) (5.9)

which means that
dim(A); = deg(ma) = 3.

We use this fact to find the general form of an element of the subring (A);. Namely,
(A), = Lin{I, A, A*}
= Lin{l, A — \I, A — \*T}
= Lln{], ELQ + E273, A2 — )\2] — 2/\(E172 + E273)}
= Lin{/, E1» + Ey3, 1 3}
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As these matrices are linearly independent, they form a basis of the subring, so we have

a b c
(A>1:{ a b :a,b,cEGF(p)}. (5.10)

a
Now we determine elements of the subring (A); which are generators. Suppose a matrix B €
(A)1 is arbitrary. Obviously, B = [a i i] and (B); C (A);. Taking into account that
(B)1 = (B —al)
we have

(B), = Lin{I, B —al, (B — al)*}

0 b c 0 0 b
:Lin{l, o bl.] 00 }
0 0

So, B is a generator of (A); if and only if b # 0. We conclude that out of p* elements of (A),
there are p(p — 1)p = p*(p — 1) generators of (A);. If b = 0 then we have two possibilities:

(i) ¢ =0, in which case (B); is of dimension 1 or
(ii) ¢ # 0, in which (B); is of dimension 2.

Once again the subring from (5.10) does not depend on the value of A, so, as in previous
cases, the assumption of Proposition 4.3 is fulfilled. From (5.9) we see that matrix A is non-
derogatory, which means that

C(A) = (A). (5.11)
Matrix from % (A) is invertible if and only if a # 0. So,
[€(A) N GLs(GF(p)| = (p—1)-p-p=(p—1)p*. (5.12)

Let M € (A); N O(A). From (5.10) we know that
a b
M = a

SIS

Since M is similar to A we get a = A\ and M has the same degree of minimal polynomial as A,
which is equivalent to b # 0. Note that, as soon as a = A and b # 0, matrix M has minimal
polynomial of degree 3 equal to the minimal polynomial of A, hence, M is automatically similar
to A. Combining the two conditions, we get

wa= (A NOA)|=1-(p=1)-p=(p—1p
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We finish the case by counting the number of vertices of type (D), using Proposition 4.3.
We get

WVipy| = 0(4)] _ |GLs(GF(p))l _ @ -0 —-p)® 1)
PN " ws T (A NGLy(GF(p))| - wa (p—p?-(p— )p (5.13)
=@ - 1)(p+1).

Case (E): Matrices with a triple eigenvalue A € GF(p) with minimal polynomial (z — \)?,
i.e., similar to
Al
A= A
A

From the Jordan form we can see that pa(z) = (z — \)? and ma(z) = (x — X)? which gives
us dim(A); = deg(my) = 2. So,

(A); = (A — M), = Lin{I, A — A\I'} = Lin{I, E\ »}.

This calculation gives us

a b
(A); = { a :a,bGGF(p)}. (5.14)

a

Next, we calculate the number of generators of (A);. Let a matrix B € (A); be arbitrary. Note
that B is a generator if and only if its minimal polynomial is of degree 2. As general form of B
is visible from (5.14), B will be a generator if and only if b # 0. So, the number of generators
of (A); is p(p — 1). On the other hand, if b = 0 then (B); is the ring of scalar matrices, which
is the only proper subring of (A);.

Note that again the subring from (5.14) does not depend on the specific value of A, so the
assumption of Proposition 4.3 is satisfied. We now calculate €(A), the centralizer of matrix A.
Knowing that

C(A)=F(A— ),

abec
letX:[d;fl € € (A — A\I) be arbitrary. We have
g hi
a b ¢| [o 1 0] [0 1 0 a b c
d e fl-lo00o0l=1000| |de f
g hi] 000 [000] [gn i
[0 a 0] [(d e f
0dol=|0o0 of,
0 g 0] 00 0
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which is equivalent to

d=0,
a=e,
/=0,
g=70,
a b c
ie, X 0 a 0f. So,
0 h 1
a b c
‘K(A):{ 0 a O :a,b,c,h,ieGF(p)}. (5.15)
0 h 1

We proceed similarly as in previous cases. A matrix from % (A) is invertible if and only if a # 0

and 7 # 0. So,
€(A) N GLsy(GF(p))| = pepp-(p—1)=@-1"
Let M € (A); N O(A). From (5.14) we know that

M = a
a

and since M is similar to A, they have the same eigenvalue, i.e., a = A, and the same degree of
minimal polynomial, so b # 0. Therefore,

wa=[(AnNOA)=1-(p—1)=p—1
We conclude by Proposition 4.3 that the number of vertices of type (E) is equal to

OA)] GLs(GF(p))| _ @ -1’ -p)@* —1?)
wa  |E(A)NGL3(GF(p))| - wa (p—1)%p% (p—1) (5.16)
=P +p+1)(p+1).

Vg : =

Case (F): Matrices with two different eigenvalues A\, u € GF(p) with minimal polynomial
(x — AN)?(x — p), i.e., similar to

A= A
From the Jordan canonical form we can see that
ma(r) = pa(z), (5.17)
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which gives us dim(A); = deg(my4) = 3. Knowing the dimension, it is easy to find the form of
a general element of the subring
(A); = (A= XI); = Lin{I, A — \I, (A — \I)?}

1 2

[0 1 0 1

- Lin{[, 0 1o }
i u—/\_ i = A
0 1 1 Jo o

_ Lin{[, 0 1o }
i p=A (1 —A)?
0l -

- Lin{[, 0 ,Eg,g}
| B A

0 1
= Lin {] — E3’3, 0 — (/L — >\)E373, E3’3}
= A

= Lin{FE11 + Ey, E1, E33}

As the generating matrices are linearly independent, they form a basis of the subring (A);, so

(A); = { " CCL ca,b,c € GF(p)}. (5.18)
b

We now determine the generators of (A);. Let a matrix B from (A); be arbitrary. Note that
if c =0 and b = a then B generates a subring of type (A); if ¢ = 0 and b # a then B generates
a subring of type (B) and if ¢ # 0 and a = b then B generates a subring of type (D). For all
other matrices in (A); we have that ¢ # 0 and b # a so the degree of their minimal polynomial
is 3, i.e., they are generators of (A);. These two conditions imply that the number of generators
isp-(p—1)-(p—1)=plp—1)>*

Note that the subring (5.18) does not depend on the specific values of A\ and p, so again
the assumption of Proposition 4.3 is satisfied. From (5.17) we see that the matrix A is non-
derogatory, which means that

¢ (A) = (A, (5.19)
and we have the general form of an element from (A); in (5.18). Matrix from %'(A) is invertible
if and only if @ # 0 and b # 0. So,

[€(A) NGLy(GFp)) = (p—~1)-(p—1)-p=(p—1)p. (5.20)
Let M € (A); N O(A). From (5.18) we know that
u=|
b
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and since M is similar to A they have both eigenvalues equal, i.e., a = A and b = pu, and they
have the same degree of the minimal polynomial, so ¢ # 0. Therefore,

wa=(A)1NOA)|=1-1-(p—1)=p—1.
By Proposition 4.3 we conclude that the number of vertices of type (F) is equal to

O] _ [GL3(GF (p))| _ @ -HE’ - -1’
wa  [C(A)NGLy(GF(p)] - wa (p=17% (p—1) (5.21)
=@ +p+1p’p+1).

Vil =

Case (G): Matrices whose characteristic polynomial is irreducible over GF(p), i.e., with
no eigenvalues in the field GF(p).
Let ¢ be a monic irreducible polynomial of degree 3 from GF(p)[z] and write it in the form

q(z) = 2° + ap2® + a1 + ag. (5.22)

Obviously, ag # 0, otherwise it can be factorised as z(x? + asz + ay). For polynomial ¢ we can
construct its companion matrix as

0 —Q
10 —ay|. (5.23)
1 —as

A=

For this matrix the characteristic polynomial is exactly p4 = ¢. Note that any matrix with
characteristic polynomial p4 is similar to the matrix A, i.e., orbit of every matrix of type (G)
contains at least one companion matrix. From Theorem 2.8 we have

ma(x) = pa(x), (5.24)
i.e., all matrices of the case (G) are non-derogatory. This means that
C(A) = (A);. (5.25)

As my is an irreducible polynomial, it follows from [26, Theorem 4.5.11] that the ideal (m4(x))
is a maximal ideal of GF(p)[z]. By Theorem 4.4.2 from the same book the quotient ring
GF(p)lz]/(ma(z)) is a field. Define the mapping

¢ GF(p)[x] = (A)1,

by
©(q) = q(A).

Then the mapping ¢ is a ring homomorphism and

Kerp = (ma(z)) = ma(z) - GF(p)[x].
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Homomorphism ¢ is obviously surjective so the first isomorphism theorem implies
() = GF(p)[a]/ (ma(x)). (5.26)
As dim(A); = deg(m4) = 3, we see that the cardinality of the subring (A); is p*. So,
(A)) = GF(p®). (5.27)

The only subfield of GF(p?), and hence the only subring of (A);, is isomorphic to GF(p). So,
the number of generators of (A); is p* — p. Combining (5.25) and (5.26) we conclude that €'(A)
is a field, so we easily detect invertible elements in ¢’ (A) as non-zero matrices, so that

€(4) N GLy(GF(p))] = p° — 1. (5.28)

We continue in a slightly different way than in the previous cases because, as it turns out,
the subring generated by the matrix A from equation (5.23) now depends on the choice of
ag, a; and ay. Instead, we will argue similarly as in the case (D) of 2 x 2 matrices. From
Proposition 2.23 we know that

_|GL(GFp)|] -0 -p)P D) 5 o
|O(A)| = G NCL(GFR))| = 1) =" —p)@" —p).

From above we know that the orbit of every matrix of type (G) contains a companion matrix
of an irreducible polynomial. In fact, it contains exactly one companion matrix, because if C
and Cy are companion matrices of two irreducible polynomials degree 3 contained in the same
orbit, then C} is similar to Cs which implies that pc, = pe, and hence C; = Cs. So, the number
of orbits in this case is the same as the number of monic irreducible polynomials of degree 3,
which is equal @ by [33, Theorem 3.25]. This means that the number of all matrices of type
(G) is equal to

PP o4y = P B_p-(p3—p)(p3—p2) _ (p?’—p)(p:‘;p)(p‘%—p?).

If we divide this number by the number of generators of a subring of type (G) we get the
number of vertices of type (G)

Vieo| = @’ )@’ —p)@’—p?*) _ (0’ - p)§p3 -7’ (5.20)

3(p* —p)

Although we do not strictly need wa = |(A); N O(A)| as in the previous cases, lets calculate it
anyway. Let B be the matrix from the subring (A); such that B is similar to A. The matrices
are similar if and only if there exists an invertible matrix S such that B = SAS~!. In this
case the conjugation 7 : (A); — (A); defined as 7(X) = SXS~! is a field automorphism with
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m(A) = B. On the other hand, if ¢ is an automorphism of (A); then ¢(A) has the same minimal
polynomial as A. Since m4 is irreducible this, means that ¢(A) is similar to A. Hence,

wa = [{(A) : ¢ € Aut((A)1) }| = | Aut(GF(p?))|.

From |33, Theorem 2.21] we conclude that ws = 3. Note that the number of generators of a
subring of type (G), which is equal to p* — p, satisfies equality p* — p = % - Wy, the product
of the number of orbits and w4, which implies that every subring of type (G) intersects every
orbit. This means that the assumption of the Proposition 4.3 actually holds in this case.

Case (H): Matrices whose characteristic polynomial is of the form
(z — N)(2* + arz + ag) (5.30)

where \,a; and ag are from the field GF(p) and py(z) := 2* + a1z + ao is irreducible over
GF(p). This means that one eigenvalue is in GF(p) and the other two are not. Such matrices
have three different eigenvalues in the algebraic closure of GF(p).

For every polynomial of type (5.30) we can construct a matrix as a block-diagonal combi-
nation of companion matrices of factors, namely

A A \
A= 0 —ag| = 0 —ay | = {Jf} (5.31)
X
1 —ay 1 —ay

Obviously, matrix A has characteristic polynomial p4(z) = (z —\)(2?+a12+ag) from equation
(5.30). According to Theorem 2.8 we have

ma(r) = pa(z). (5.32)

A consequence of the previous point is that each matrix whose characteristic polynomial is
pa(z) is non-derogatory, so it is similar to A, i.e., the orbit of every matrix of type (H) contains
at least one matrix of the form (5.31).

For the matrix A defined in (5.31) consider the subring

(A ={p(A) :p € Zlz]}.
From (5.32) we know that degm(z) = 3, so we have
dim(A); = 3. (5.33)

As matrix X defined in (5.31) has characteristic polynomial px(z) = pa(x) = 2% + ayx + ao,
the Cayley Hamilton theorem implies

X2+ a1 X +aol =0, (5.34)
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which means that
X? = —a1 X — apl. (5.35)

Now we use (5.35) to determine the subring (A);, namely

(A), = Lin{I, A, A%}
o ] [
:Lin{]’ { . X } ’ { - —alX—aol]}‘

If we replace the third matrix A% with the linear combination A% + ay A + agl we get

(A>1:Lin{f,{)\X},l)\2+a1)\+a001}.

On the position (1, 1) of the third matrix we recognize ps(A) which is a non-zero element of the
field GF'(p) as the polynomial ps is irreducible. This means that the element py()\) is invertible,
so we can multiply the third matrix with po(A)~" and get Ei 1. So, we have

(A), = Lin {I, {%} ,EM}.

Now, we replace matrix / with I — Ey 1 = Es9 + E33 and matrix A with A — AE; ; and reorder

them to get
: 0
<A>1 = Lln {E1,17 E272 —|— E373, [4‘7] } (536)

Now it easy to calculate the number of generators. Let B from (A); be an arbitrary matrix.
We have

al

B = b —cag (5.37)

¢ b—cay

where a,b and ¢ are from GF(p). Matrix B is a generator of (A); if and only if its minimal
polynomial is of degree 3. As we see, matrix B is block-diagonal matrix, so by the Theorem 2.9
the minimal polynomial of matrix B is the least common multiple of the minimal polynomials
of the blocks. Let us concentrate on the lower right block. Obviously, for ¢ = 0 we have a scalar
matrix whose minimal polynomial is of degree 1, so for now we will consider case ¢ # 0. In this

42



case, the characteristic polynomial of the lower right block is

B b—=x —cag
Poi+ex (x) = det [ ¢ b—ca—z }
B —(z —0) —cag
= det [ c —ca; — (z — b)
S (R E—
=c”-det [ 1 P ]

= px((xz —b)c ).

As matrix X has characteristic polynomial ps, which is irreducible, for all o from GF(p) it
holds that

Porex () = px((a =b)c™h) £0,
i.e., the lower right block of matrix B has irreducible characteristic polynomial. So, its minimal
polynomial is irreducible, which means that the minimal polynomial of the matrix B is of degree
3 and B generates (A);. Hence, the number of generators of the subring (A); is

p-p-(p—1)=p(p—1).

For case ¢ = 0, obviously, we have two cases. If a = b then B is a scalar matrix, a generator of
the subring of type (A), and if a # b then B generates a subring of type (B).
As a consequence of (5.32) matrix A is non-derogatory, so from Theorem 2.12 we have

C(A) = (A). (5.38)
We proceed similarly as in case (G). A matrix from €(A) is of the form given in (5.37) and is
invertible if and only if
b —cay | = a(b(b— cay) + c*ag) # 0.
c b—cay

This is equivalent to a # 0 and
b? — beay + ag # 0. (5.39)

As the first case, we consider (5.39) under condition ¢ # 0. When we multiply (5.39) with

2 we get
() ~aa(Q) a0

(-2) (-9 e
(- 0
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which is true for all b and ¢ # 0 from GF(p) as p, is an irreducible polynomial. In second case,
when ¢ = 0, we have b? # 0 so b # 0. Hence, a # 0 and at least one of b and ¢ is non zero. So,

C(A)NGLy(GF(p)|=p—1p-p—D+p-1)-(p—1)-1
=(p-1*(p+1)
= -Dp-1).

From Proposition 2.23 we conclude that

|GL(GFD)| -0 -p)*—p) 5
O] = [€(A)NGLy(GF(p))| (p*—=1(p—-1) = -1y

We have shown above that the orbit of every matrix of type (H) contains a matrix of the
form (5.31). Similarly as in the case (G) we conclude that it contains exactly one such matrix.
So, the number of orbits in this case is equal to the number of polynomials of type (5.30). To
count the number of such polynomials, note that the number of possible polynomials for the
first factor is p. Every polynomial from the set

{px(x) :x—/\:/\EGF(p)}

is appropriate, i.e., every element from GF(p) can be the eigenvalue from the field. The
number of possible polynomials for the second factor (number of monic irreducible polynomials
of degree 2) is @, because there are p? monic polynomials and out of them we have p + @
reducible polynomials. This means that there are in total p- % different polynomials suitable
to be a characteristic polynomial of matrices from the case (H), hence we obtain also the same

number of orbits. This implies that the number of matrices of type (H) is equal to

2 2 5 -1 3_1

We obtain the number of vertices of type (H) by dividing the above number by the number of
generators of a subring of type (H) which is equal to p?(p — 1), namely

V| = Pe-NE' -1 _pPe’-1) (5.40)

2p%(p— 1) 2

We also calculate w4 as in the previous case. From equation (5.36) we see that

(A =GF(p) & (X
Similarly as in case (G) we prove that (X); & GF(p?) so
(A); = GF(p) ® GF(p*). (5.41)
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Let M € (A); N O(A). From (5.37) we know that

@ a
M = b —cay | = {—‘—}
Z
c b—cay
and since M is similar to A they have the same eigenvalue from the field, i.e., a = A, and

matrix Z has characteristic polynomial py. So, Z is similar to X, because of the irreducibility
of polynomial py. Therefore,

wa = [(A1NO(A)] = wx = [{(X)1 NO(X)].

Similarly as in case (G) we conclude wy = 2. Hence, in this case the number of generators of
a subring of type (H), i.e., p*(p — 1), is equal to product of the number of orbits and w4, i.e.,
2
’w - 2. This again implies that every subring of type (H) intersects every orbit. Again, it

means that the assumption of the Proposition 4.3 holds for this case, as well.

Now we summarize results from cases (A) to (H) in Table 5.1, to have a global overview of
compression into vertices. We can check if the numbers in Table 5.1 are correct, namely, if we
compute the scalar product of the second and third column of Table 5.1 we obtain p” which is
exactly the cardinality of M3(GF(p)).

Table 5.1: Vertices of AL(M3(GF(p))).
CASE | Number of vertices ~ Number of matrices compressed  dimgp()(A)1

(A) 1 P 1
(B) (P> +p+1)p° plp—1) 2
(C) | @ +p+1)p*p+1) p(p—1)(p—2) 3
(D) (P’ —Dp+1) p*(p—1) 3
(E) (P> +p+1(p+1) pp—1) 2
F) | @P*+p+1p*(p+1) p(p — 1) 3
G) | 50— -1 P —p 3
(H) 1 —1)p? p*(p—1) 3
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Chapter 6

Neighborhoods of vertices of
A (M3(GF(p)))

In this chapter we describe the neighborhood of each vertex of A'(Mj3(GF(p))). For a vertex
v of a certain type we will calculate the number of vertices of each type that are connected to
v. This will be done by investigating the centralizer of a matrix representative A of vertex v.
Note that the neighborhood of the vertex v is a compressed commuting graph of the centralizer
% (A). For the vertex v of type (V) we will denote by N(X,Y') the number of neighbors of type
(X).

Suppose A is a matrix representative of a vertex v of certain type. We consider cases with
respect to the type of vertex v.

Case (A): As we know that we have only one vertex of type (A) and the whole subring
of scalar matrices (consists of p scalar matrices) is compressed into that one vertex, a matrix
representative of the vertex v is a scalar matrix. The centralizer of a scalar matrix is the whole
ring M3(GF(p)) so all the other vertices will be in the neighborhood of v, including v itself.
Table 6.1 represents the neighborhood of v of type (A), where the number in row (X) represents
the number of vertices of type (X) in the neighborhood.

Case (B): The centralizer of a matrix A of type (B) is determined in (5.3) as

a
‘K(A):{ e f :a,e,f,h,iEGF(p)}.
h 1

We will determine the number of neighbors for each type separately.

(A) Obviously, the subring of scalar matrices is inside the centralizer, so the unique vertex of
type (A) is in the neighborhood of vertex v, i.e. N(A, B) = 1.
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Table 6.1: Neighborhood of a vertex v of type (A).
| (A)
1
»*+p+1)p?
s +p+Dp’(p+1)

)
)
)
; (P —=1p+1)
)
)
)

(P +p+1)(p+1)

(pl2 +p+1)p*(p+1)

s

-p)(p° —p?)
s —1)p?

T EHoOAQwW e

(
(
(
(
(
(
(
(

(B) Let B be an arbitrary matrix from the centralizer such that B is of type (B), i.e.,

a !
B = e f| similar to 6]
h i I6;

where o and 3, 8 # «, are from GF(p). This will happen in two subcases

1)

Suppose [Z { ] is similar to a scalar matrix, i.e. if it is a scalar matrix, as there are
no matrices similar to scalar out of themselves. This is equivalent to

6267
/=0,
h=0,
Ii:/BJ
a = Q.

This implies that for a we have p possibilities, for 8 one option less, i.e., p—1. For a
chosen eigenvalues we have exactly one matrix of type (B) inside of centralizer €' (A).
So, in total we have p(p — 1) - 1 = p(p — 1) matrices of type (B) in this subcase.

hi
to be diagonalizable with two different eigenvalues v and 3, and a is either « or S.
From Table 4.1 we know that the number of diagonalisable 2 x 2 matrices with two
different eigenvalues, i.e., 2 x 2 matrices of type (B), is (p+2_1)p -p(p — 1), the number
of vertices times the number of matrices compressed into one vertex. For any such
matrix we have 2 options for a. So, we have (p+ 1)p-p(p — 1) = p*(p+ 1)(p — 1)

matrices of type (B) in this subcase.

(0%
If [Z {] is a non-scalar, then, in order that B is similar to [ B 6} , matrix [e f] has

In total, we have p(p — 1) + p*(p+ 1)(p — 1) = p(p — 1)(p* + p + 1) matrices of type (B)
inside the centralizer € (A).
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If one matrix is in the centralizer, the whole subring generated by that matrix is in the
centralizer, so we divide the previously calculated number of matrices by the number of
generators of a subring of type (B), see second column of Table 5.1, to get the number of
vertices of type (B) which are in the neighborhood of vertex v, i.e.,

_plp=D@*+p+1)

N(B,B =p*+p+ 1
(5. 5) plp—1)
Let B be an arbitrary matrix from the centralizer ¢’(A) such that B is of type (C) i.e.,
a A
B = e f| 1is similar to 14 ,
h v

where A, 1 and v are three different eigenvalues from the field GF'(p). This will be the
case if and only if [§ /] is diagonalisable with two different eigenvalues and a € GF(p)
is different from previously mentioned eigenvalues. From Table 4.1 we know that the
number of diagonalisable 2 x 2 matrices with two different eigenvalues, i.e., 2 X 2 matrices
of type (B), is @ -p(p — 1), the number of vertices of type (B) times the number of
matrices compressed into one vertex. Furthermore, we have p— 2 options for a, so in total
we have (p+—21)p -p(p—1)-(p—2) such 3 x 3 matrices. Similarly as in case (B), if we divide
this number by the number of generators of a subring of type (C), see second column of
Table 5.1, we get the number of vertices of type (C) which are in the neighborhood of
vertex v, i.e.,

(p+1)p | —~1)- -9 2
N(C.B) = 2 pp—1)-p=2) _p’+p

plp—1)(p—2) 2

Note that all matrices of type (D) have only one linearly independent eigenvector. Since
the matrices from the centralizer ¢'(A) are block-diagonal, we see that all of them have
at least two linearly independent eigenvectors in the algebraic closure of the field GF(p),
meaning that there are no matrices of type (D) inside the centralizer, i.e., N(D, B) = 0.

From the Table 4.1 we know that the number of 2 x 2 matrices with one double eigenvalue
and minimal polynomial of degree 2 is (p+1)-p(p—1), the number of vertices of type (C)
times the number of matrices compressed into one vertex. So, the number of matrices of
type (E) in the centralizer € (A) is (p+ )p(p —1) -1 = (p+ 1)p(p — 1) because in case
(E) we have matrices with triple eigenvalue. Finally, we divide the number of matrices
by the number of generators of a subring type (E), which is p(p — 1), to get the number
of vertices of type (E) in the neighborhood of vertex v, i.e.,

N(E. B) = (p+Dpp—1) E—

p(p—1)
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(F)

20

Similarly as in the previous case, we know that the number of matrices of type (F) in the

centralizer is (p + 1)p(p — 1) - (p — 1) because now we have two different eigenvalues, and

thus p — 1 choices for a. After we divide by the number of generators of a subring of type

(F), which is p(p — 1)?, we get the number of vertices of type (F) in the neighborhood of

vertex v, i.e.,

pp—Dp+ (-1
p(p—1)

As all the matrices from the centralizer have at least one eigenvalue from the field GF(p),
there are no matrices of type (G) in the centralizer, so vertex v has no neighbors of type

(@), i.e., N(G, B) = 0.

N(F,B) =

=p+1.

Let B be an arbitrary matrix from the centralizer €' (A), i.e.,

a
B = e f
h i

Matrix B is of a type (H) if and only if the 2 x 2 block is one of the 3 (p* — p) - (p* — p)
matrices with irreducible characteristic polynomial, see row (D) of the Table 4.1, and a
is an arbitrary element from the field GF(p). So, the number of matrices of type (H)
inside the centralizer is %(p2 —p)(p? — p) - p. If we divide this number by the number of
generators of a subring of type (H), which is p?(p — 1), we get the number of vertices of

type (H) in the neighborhood of vertex v, i.e.,

N(H. B) - 20 =)’ —pp _plp—1)

p*(p—1) 2

The results of the above calculations are collected in Table 6.2.

Table 6.2: Neighborhood of a vertex v of type (B).
| (B)

@) 1
B) | pP*+p+1
(C)| Z
(D) 0

(E) p+1
(F) p+1
(G) 0
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Case (C): The centralizer of a matrix A of type (C) is determined in (5.6) as

(A)

%(A):<A>1:{ " :a,b,cEGF(p)}.

While calculating the number of generators of subring type (C) in Chapter 5, we detected
the conditions for a matrix from %’ (A) = (A); to generate a subring of dimension 1 or 2,
i.e., when the matrix represents a vertex of type (A) or (B). For the vertex of type (A)
the condition was a = b = ¢ and since we have only one vertex of type (A) we have

N(A,C) = 1.

For the vertex of type (B) the condition was b =c¢ # a, a =b # cor a = ¢ # b. In each
of the three subcases we get one subring and those three subrings are different, so in the
neighborhood of the vertex v we have 3 vertices of type (B), i.e.,

N(B,C) = 3.

According to Proposition 4.4 there is exactly one vertex of type (C) in the neighborhood
of vertex v, namely v itself, i.e.,
N(C,C) = 1.

Since in the ¥’(A) = (A); all matrices are diagonal, there are no vertices of types (D),
(E), (F), (G) and (H) in the neighborhood of vertex v, i.e.,

N(D,C) = N(E,C) = N(F,C) = N(G,C) = N(H,C) =0.

The results of the above calculations are collected in Table 6.3.

Table 6.3: Neighborhood of a vertex v of type (C).

__1©

NN AN AN TN N N T
T RHEHOQW >
— N e N
OO O OO~ W
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Case (D): The centralizer of a matrix A of type (D) is determined in (5.11) and (5.10) as

a b c
CK(A):{ a b :a,b,cEGF(p)}.

All matrices from the centralizer have one triple eigenvalue from the field GF(p), i.e., possible
types inside centralizer are (A), (D) and (E) while all other types are not possible. This means
that

N(B,D)=N(C,D)=N(F,D)=N(G,D)=N(H,D) =0.

(A) While calculating the number of generators of subring type (D) in Chapter 5, we detected
the condition for a matrix from % (A) = (A); to generate a subring of dimension 1, i.e.,
when the matrix represents a vertex of type (A). It was b = 0 and ¢ = 0 and since we
have only one vertex of type (A) we have

N(A,D) = 1.

(D) According to the Proposition 4.4 there is exactly one vertex of type (D) in the neighbor-
hood of vertex v, namely v itself, i.e.,

N(D,D) = 1.

(E) For the subring of dimension 2 the condition was b = 0 and ¢ # 0. It means that out of
p? matrices in the centralizer, we have p-1-(p — 1) = p(p — 1) matrices that individually
generate a subring of dimension 2. As subring of type (£) has p(p — 1) generators, see
Table 5.1, in the neighborhood of the vertex v we have 2= _ 1 vertex of type (E). So,

p(p—1)
N(E,D) = 1.
The results of the above calculations are collected in Table 6.4.
Case (E): The centralizer of a matrix A of type (E) is determined in (5.15) as

a b
(K(A):{ 0 a

c
0 :a,b,c,h,z’GGF(p)}.
0 h 1

A matrix B from the centralizer has eigenvalues a,a and i from the field GF(p), which
means that cases (C), (G) and (H) are not possible, i.e.,

N(C,E) = N(G,E) = N(H,E) = 0.

We consider two possibilities concerning the eigenvalues.
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Table 6.4: Neighborhood of a vertex v of type (D).
(D)

NN AN AN TN N N T
T OoHEHOoOAQW >
— — —
OO O = OO

1) If i = a we have a matrix B = [a % C} with triple eigenvalue a from the field GF(p). Now

we look at the number of eigenvectors, in order to detect the types of matrices. We find
eigenvectors for the eigenvalue a by solving the matrix equation (B — al) - v = 0, which
is equivalent to

0 b c x 0
0 yl =10
h 0 z 0
It is further equivalent to the system
b =0
Yy +Ccz , (6.1)
hy = 0.

Note that z is a free variable. We will break the system solving into cases and subcases,
as follows.

(a) If h =0 we have B = [a o C} and system (6.1) is equivalent to
by + cz = 0.

(i) If b=0and ¢ =0 then B = [a a a} , i.e., B is a scalar matrix. We have p such
matrices and they are of type (A).

(ii) If b# 0 and ¢ = 0 then B = [ 0 ] and system (6.1) is equivalent to

by = 0.

with solution y = 0. Now, we have that z is a free variable so we have two
linearly independent eigenvectors. This means that B is of type (E). There are
p- (p—1) such a matrices.
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(iii) If b =0 and ¢ # 0 then B = [a a 2] and system (6.1) is equivalent to

cz: =0 z=0.

Now, y is free variable so we have again two eigenvectors and matrix B is of
type (E). Thereare p-1-(p—1)-1-1=p(p— 1) such a matrices.

(iv) If b # 0 and ¢ # 0 then B = [a o c] and system (6.1) is equivalent to

by
3

Z =

Here, y is a free variable, as is x, so we have two linearly independent eigenvectors
which means that matrix B is of type (E). There are p-(p—1)-(p—1) = p(p—1)?
such a matrices.

(b) If h # 0 then B = [a % C] and the system (6.1) is equivalent to

a

by +cz =0,
y =0,

cz =0,
y = 0.

We consider two possibilities with respect to the value of parameter c.

which is further equivalent to

(i) If ¢ = 0 then z is a free variable so we have two linearly independent two
eigenvectors which means that matrix B is of type (E). There are p-p-(p—1) =
p*(p — 1) such matrices.

(ii) If ¢ # 0 then z = 0 so we have only one linearly independent eigenvector so
matrix B is of type (D). There are p-p-(p—1) - (p — 1) = p*(p — 1)? such
matrices.

abec

2) If i # a we have a matrix B = ] with two different eigenvalues. Namely, a of the

algebraic multiplicity 2 and 4 of the azlgebraic multiplicity 1. Once again, we will consider
the number of eigenvectors in order to detect the types of matrices. Obviously, eigenvalue
1 will have one linearly independent eigenvector, as geometric multiplicity is no greater
than the algebraic multiplicity.

For the eigenvectors with eigenvalue a we have matrix equation (B — al) - v = 0, which
is equivalent to

0 b ¢ x 0
0 yl = 1[0
h i—a z 0



It is further equivalent to the system

b —
{y+cz 0, (6.2)

hy + (i —a)z = 0.
Note that z is a free variable. Now we consider two possible cases.

(a) Eigenvalue a has only one linearly independent eigenvector. This is the case if and

only if the system (6.2) has only the trivial solution, as it is homogeneous. This
holds if and only if

70,

b c
h i—a

which is equivalent to b # % So, in this case matrix B has two linearly independent
eigenvectors and is of type (F). The number of such matrices Bisp-(p—1)-p-p-

(p—1)=p*p—1)"
(b) Eigenvalue a has more than one linearly independent eigenvector. This happens if
and only if b = -~ Then system (6.2) has non-trivial solutions. It is equivalent to

%y +cz =0,

hy + (i —a)z =0,
which is further equivalent to

c(hy + (i —a)z) =0,

hy + (i —a)z = 0.

The last system is equivalent to z = —i}i—ya and y is free variable. So eigenvalue a

has exactly two linearly independent eigenvectors, i.e., matrix B has three linearly
independent eigenvectors which means that it is of type (B). There are p-p-p-(p—1) =

p(p — 1) matrices in this subcase.

Recapitulating the previous calculation, we detected matrices of type (A) only in the subcase
1)-(a)-(i). As there is only one vertex of type (A) we have

N(A,E) = 1.

Matrices of type (B) were detected only in subcase 2)-(b), the number of matrices was p*(p—1).
If we divide this number by the number of generators in case (B) we get

N(B, E) :ZM = p°.

p(p—1)
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In subcase 1)-(b)-(ii) we detected matrices of type (D) and it was the only case with matrices of
this type. The number of matrices was p*(p — 1)? and if we divide this number by the number
of generators in case (D), we get

p’(p— 1)

p*(p—1)
Matrices of type (E) were detected in numerous subcases, namely in 1)-(a)-(ii), 1)-(a)-(iii),

1)-(a)-(iv) and 1)-(b)-(i). We obtain the total number of matrices of type (E) by summing the
numbers of matrices from the subcases. We get

N(D,E) = =p—1.

pp=1)+plp—1) +plp—1)*+p*(p—1) =p(p—1)A+1+p—1+p)=pp—1)(2p+1).

If we divide this number by the number of generators in case (E), we get

plp—1)(2p+1)
p(p—1)

In the remaining subcase (2)-(a) we detected matrices of type (F), namely the number of
matrices was p?(p — 1) and if we divide it by the number of generators of type (F) we get

Pg(p - 1)2 2
p(p—1)?

The results of the above calculations are collected in Table 6.5.

N(E,E) = —op+1.

N(F,E) =

Table 6.5: Neighborhood of a vertex v of type (E).
| (®)

EC=EEoEE
DO
3
v A
[a—y

Case (F): The centralizer of a matrix A of type (F) is determined in (5.19) and (5.18) as

CK(A):{ a :a,b,cEGF(p)}.
b

Let B be an arbitrary matrix from the centralizer. We consider four possibilities.
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1. If b = a and ¢ = 0 then matrix is of type (A). There is unique subring of type (A), so
vertex v has one neighbor of type (A), i.e.,

N(A,F)=1.

2. If b= a and ¢ # 0 then matrix B is of type (E), because degmp = dimgp) (B)1 = 2.

The number of matrices of type (E) inside the centralizer is p-1-(p — 1). As a subring
plp=1) _ 1
p(p—1)

of type (E) has p(p — 1) generators we conclude that vertex v of type (F) has

neighbor of type (E), i.e.,
N(E,F)=1.

3. If b # a and ¢ = 0 then matrix B generates a subring of type (B). The number of matrices
of type (B) inside the centralizer is p- (p — 1) -1 = p(p — 1). As a subring of type (B)

:B = 1 neighbor of

has p(p — 1) generators, we conclude that vertex v of type (F) has z Ez

type (B), i.e.,
N(B,F)=1.

4. If b # a and ¢ # 0 then matrix B has two different eigenvalues and mp = (x — a)*(z — b)
because ¢ # 0, i.e., B is of type (F). The number of matrices of type (F) inside the
centralizer is p- (p— 1) - (p — 1) = p(p — 1)?. As a subring of type (F) has p(p — 1)?

generators, we conclude that vertex v of type (F) has i g :Rz = 1 neighbor of type (F),

ie.,
N(F,F)=1.
The same can be concluded from Proposition 4.4.

All the other types are not present in the centralizer so
N(C,F)=N(D,F)=N(G,F)=N(H,F)=0.

The results of the above calculations are collected in Table 6.6.
Case (G): The centralizer of a matrix A of type (G) is determined in (5.25) and (5.27) as

€(A) = GF(p).

In Chapter 5 we found out that the only subfield of the centralizer ¢ (A) & GF(p*), and
hence the only subring, is isomorphic to GF(p). This means that the vertex v of type (G) has
only two neighbors: unique vertex of type (A) and v itself, i.e.,

N(A,G) = N(G,G) =1

and

N(B,G) = N(C,G) = N(D,G) = N(E,G) = N(F,G) = N(H,G) = 0.
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Table 6.6: Neighborhood of a vertex v of type (F).
(F)

NN AN NN N N
T OOHmEHO QI
S e S N e N S
OO == OO = =

Table 6.7: Neighborhood of a vertex v of type (G).
(G)

NN N S S
T EHTO Q>
S e N S N e N
O R OO O oo

These results are collected in Table 6.7.
Case (H): The centralizer of a matrix A of type (H) is determined in (5.38) and (5.37) as
the set of matrices of the form
a
B = b —cag
c b—cay

where a,b,c € GF(p) are arbitrary and a; and ag are fixed and depend on A. In Chapter 5,
Case (H), we showed that matrix B is a generator of the subring (A)y, i.e., it is of type (H),
if and only if ¢ # 0. This means that there are p-p- (p — 1) = p*(p — 1) matrices of type (H)
inside the centralizer. Dividing by the number of generators of a subring of type (H) we obtain

p’(p—1)

ﬁ@—D:L

N(H, H) =

For ¢ = 0 we have B = [a b b]. If b = a then matrix B is a scalar matrix, so vertex v has a
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unique neighbor of type (A), i.e.,

N(A,H) = 1.
If b # a matrix B is of type (B). We have p - (p — 1) such matrices, and if we divide it by the
number of generators of a subring of type (B) we get

p(p—1)

NBH) = )

=1.

The results of the above calculations are collected in Table 6.8.

Table 6.8: Neighborhood of a vertex v of type (H).

(H)
(A)] 1
B)| 1
(C) | 0
(D) | 0
(E) | 0
(F) ] 0
(G) | O
(H) | 1

The results about the neighborhoods of all the vertices of the A;(M3(GF(p))) obtained in
this chapter are summarized in Table 6.9.

Table 6.9: Neighborhoods of vertices of Aj(M3(GF(p))).

\ (A) (B) (C) (b)) (E) (F) (G) (H)
(A) 1 1 T 1 1 T 1 1
(B) (P> +p+1)p? P+p+1 3 0 »? 1 0 1
©) | t@*+p+P*(p+1) 30*+p) 1 0 0 0 0 0
(D) (P’ -1p+1) 0 0O 1 p—-1 0 0 0
E)| @P+p+Dp+1) p+1 0 1 2+1 1 0 0
F) | (P*+p+1p*(p+1) p+1 0 0 P 1 0 O
G| 36°—p)®* —p? 0 0 0 0 0 1 0
(H) Hp* = 1)p? p—1) 0 0 o 0 0 1

29
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Chapter 7

Subgraph induced on V( B) U V< E)

In this chapter we are going to describe the subgraph of the A'(M3(GF(p))) induced on the set
Vig)UV(g). We will refer to this subgraph as (B)-(E) graph. In order to describe (B)-(E) graph,
we are going to use projective plane over the field GF(p). The motivation for this approach
is as follows. Take a vertex v of type (B) and suppose it is represented by a matrix A. We
know that matrix A is diagonalisable, with two different eigenvalues in GF(p). Without lost of
generality we can assume that A is diagonal with eigenvalues A and p, i.e.,

A
A= It
7

Note that vertex v is also represented by matrix A — pl, which induces a decomposition of the
vector space GF(p)? in the sense that

GF(p)® =Im(A — ul) @ Ker(A — ul) = GF(p) © GF(p)*.

As 1-dimensional subspace Im(A — pl) represents a point P in a projective plane and 2-
dimensional subspace Ker(A — pl) represents a line L, it is natural to use projective plane
to describe vertices of type (B). Once P and L are given, a diagonal matrix A is uniquely
determined up to the eigenvalues A and p, as we will show in Section 7.2. Similar consideration
can be done also for a vertex of type (E).

7.1 Projective plane over GF(p) and its incidence matrix

Let us recall the notion of the projective plane over the field GF(p), which we denote by
PG(2,p), see [11]. Consider the set of all 1-dimensional subspaces of the vector space GF(p)?
and denote it by & and the set of all 2-dimensional subspaces of the vector space GF(p)® and
denote it by .Z. The points of the projective plane PG(2,p) are the elements of &2 while the
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lines are the elements of .. Furthermore, a point P € & lies on a line L € % if and only if
P C L and we denote this by P € L.

The cardinality of the set of points & is given as the Gaussian p-binomial coefficient with
n=3and k=1, ie.

3 -1
2| = =L =p +p+1.
1 p—l
p

The cardinality of the set of lines . is equal to

3] _ @’ -Hp*-1) _ ,
Z| = { } = =p°+p+ 1
1= , @=Dp-1)
Every line contains
2] p*—-1
-5t
p
points and every point P lies on
2| = +1
1 _p
p

lines, because 2-dimensional subspaces of GF(p)? that contain 1-dimensional subspace P are

in a bijective correspondence with 1-dimensional subspaces of the 2-dimensional factor space

GF(p)?/P. The plane PG(2,p) can be described by incidence matrix which is 0-1 matrix of the

order (p? +p+1) x (p®> +p+ 1). Each row of the incidence matrix corresponds to a point and

each column of the matrix corresponds to a line, where (P, L) entry of the matrixis 1 if P € L,

otherwise it is 0. Each row and each column of incidence matrix contains exactly p + 1 ones.
We denote

B={(PLYePx L P¢L} (7.1)

and
E={(PL)e *x <L :PeclL}. (7.2)

Elements of & correspond to zeros in the incidence matrix and elements of & correspond to
ones. Obviously, |&| = (p+1)(p* +p+1) and |B| =p*(p* +p+ 1).

We will now explicitly describe the incidence matrix of the projective plane PG(2,p). The
description is adapted from [10]. Let e be the vector of length p with 1 at all positions, i.e.,

e=[1 1 - 1]" err.

For every s € {1,2,...,p} let Ry € M,(R) be the matrix with s-th row equal to e and all
other entries 0, i.e.,

1, ifi=s
RS = Y Y
(£e)s, { 0, otherwise.
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Furthermore, for every s € {2,...,p} and every t € {1,2,...,p} let S;; € M,(R) be the
permutation matrix defined as

(S.) = 1, if(s—1)(i+j) =t (mod p),
»tig 0, otherwise.

Now, let T}, € My ,,2(R) be 0-1 matrix defined as a block matrix

1 e 0 0 0
(& 0 R1 RQ cee Rp
0 RIT I, I, I,
To=10 RT Sy, Sas - Sapl- (7.3)
_O Rg Sp1 Sp2 e Sp,p_

where I, is the identity matrix order p. It is proved in the [10] that 7, is the incidence matrix
of the plane PG(2,p).

In the case p = 2 the incidence matrix T5 of the projective plane PG(2,2) (called also Fano
plane) is

11 10 0]0 0
1[0 0[1 10 0
1(0 0/0 0|1 1
T,=]0[1T 0/T 0[1 0
0[1 0/0 1[0 1
0[0 1]0 1[1 0
00 11 0|0 1]

In the case p = 3 the incidence matrix T3 of the projective plane PG(2,3) is

1/1 1 1/000/000[0 00O
1[0 00[1 1 1/000/0 00
110 0 0/0 00111000
110 0 0j]0 00/0O0O|1 11
0/1T 001 00[100[L 00
0/1 00/010[010[0T10

Ty=]0/100[00 1[0 0 1|0 0 1
0/0 1 0/]0 0 1]100/0 1 0
0/0 1 0/010[00 1|1 00
0/0 1 0/100[010[/00°71
0/0 0 1|1 0 0[]0 0 1]0 I 0
0/0 0 1/0 0 1(0 1 0[1 00
| 0/0 0 1|0 1 0[100/00 1,
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7.2 Bijection between V(g U V(g and & x &

We will now establish a bijection between the sets V() and %. Let v € V(p) be an arbitrary
vertex. Let A be a matrix representative of the vertex v. Then there exists an invertible matrix
S and A\, u € GF(p), p # A, such that

A
A=S 0 S
1
Now we can define a mapping ®p : V(p) — % by
Op(v) = (Im(A — pl), Ker(A — pl)). (7.4)

Note that L = Ker(A — pl) is a 2-dimensional subspace of GF(p)? so it belongs to £ and
consequently P = Im(A — pl) is a 1-dimensional subspace of GF(p)® so it belongs to Z2.
Furthermore, the intersection of P and L is trivial subspace so P ¢ L which means that ®g(v)
belongs to %A.

We need to prove that ®p is well defined, i.e., ®(v) does not depend on the choice of
the representative A. Suppose that B is another matrix representative of the vertex v. Then

(B); = (A); = Lin{I, A} so B = al + bA where b # 0. It follows that

a+ b\
B=S a+bu St
a+ bu

Now we have
b(A = )
B—(a+bu)l=S 0 S =b(A — pul).
0

It follows that Im(B — (a + bu)l) = Im(A — pl) and Ker(B — (a + bu)I) = Ker(A — pl) which
shows that ®p(v) is well defined.

Now, we want to show that mapping ®p is a bijection. In order to do that we define a
mapping Vg : # — V(p) as follows. Let (P,L) € % be arbitrary. Let {b;} be the basis of P
and {by, b3} be the basis of L. Since P ¢ L vectors by, by and bz are linearly independent so
the matrix S = [bl by bg], with columns by, by and bs, is invertible. Take Wp(P, L) to be the
vertex v in V(p) represented by the matrix of the idempotent linear operator with image P and
kernel L, i.e., the matrix A = SE; 1S~!. Note that matrix A is independent of the choice of the
basis vectors by, by and bs.

Since the matrix A has a double eigenvalue 0 and a simple eigenvalue 1, it is clear from
the definition of ®p that ®p(v) = (ImA,Ker A) = (P, L), so that &5 o Uy = Idy. Since
\Vig)| = | 8] = p*(p* + p + 1), we conclude that @ is a bijection.
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We will now establish a bijection between the sets V(g) and &. Let v € V(g) be an arbitrary
vertex. Let A be a matrix representative of the vertex v. Then there exists an invertible matrix
S and A € GF(p), such that

Al
A=S A S,
A

Now we can define a mapping ®z : V(g) — & by
Op(v) = (Im(A — A1), Ker(A — AI)). (7.5)

Note that L = Ker(A — ul) is a 2-dimensional subspace of GF(p)? so it belongs to £ and
P =TIm(A—ul) is a 1-dimensional subspace of GF(p)? so it belongs to &. Furthermore, P € L
which means that ®g(v) belongs to &.

We need to prove that &g is well defined, i.e., ®g(v) does not depend on the choice of

the representative A. Suppose that B is another matrix representative of the vertex v. Then
(B); = (A)1 = Lin{I, A} so B = al + bA where b # 0. It follows that

a+ b\ b
B=S a+ b\ S,
a + bA
Now we have
0 b
B—(a+b\)I=S| 0 St =b(A— ).

0

It follows that Im(B — (a + bA\)I) = Im(A — AI) and Ker(B — (a + bA)I) = Ker(A — AI) which
shows that ®g(v) is well defined.

Now, we want to show that mapping ® is a bijection. In order to do that we define a
mapping Vg : & — V(g as follows. Let (P, L) € & be arbitrary. Let {b;} be the basis of P and
bz be the vector such that {by,bs} is basis of L. As a final step, let by be the vector such that
{b1,ba, b3} is basis of GF(p)®. Now, we define matrix S = [b; by, b3], with columns by, by and
bs, obviously invertible. Take Wg(P, L) to be the vertex v in Vg represented by the matrix of
the nilpotent linear operator with image P and kernel L, i.e., the matrix A = SE; 5S™!. Note
that vertex v is independent of the choice of the vectors by, by and bs.

Since the matrix A has a triple eigenvalue 0, it is clear from the definition of ®g that
Pp(v) = (ImA,Ker A) = (P, L), so that 5oV = Ids . Since |Vig)| = |&] = (p*+p+1)(p+1),
we conclude that ¢ is a bijection.

We now combine the mappings @5 and @5 into a bijection

O ViUV = BUE =P x &

defined by ®|y, = ®p and @y, = ®g. Since V(p) and V() are disjoint, ® is well defined.
Since also # and & are disjoint and ®p and ®g are bijections, ® is a bijection.
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7.3 Geometrical interpretation of edges

We define a graph A with vertex set V(A) = & x £ and edges defined as follows. Let v; and v,
be elements of Vi 5)UV(g). There is an edge between ®(v;) and ®(vs) in A if and only if there is an
edge between v; and v, in the compressed commuting graph of the ring M3(GF(p)). This makes
the mapping @ into a graph isomorphism between the induced subgraph of A'(M3(GF(p))) on
the set Vip)UV(g) and A. Next theorem describes the edges of the graph A in geometric terms.

Theorem 7.1. Let (P, Ly), (P2, L) € &2 x L be arbitrary. There is an edge between (Py, Ly)
and (Pa, Ls) in A if and only if one of the following conditions holds

(a
(b) P, € Ly, Py € Lo, and either Py = Py or Ly = Lo,

P2 andL1 :LQ,

) P
)
(¢) PL# Py, Ly # Ly and P, € Ly N Ly and Py € Ly \ Ly,
(d) Py # Py, Ly # Ly and P, € Ly N Ly and Py € Ly \ Lo,
(e) P # Py, Ly # Ly and Py € Ly \ Ly and Py € Ly \ Lo.

Proof. Let (P, L) = ®(vy) and (P, L) = ®(vy). Let A; be the matrix representative of v;
with image P; and kernel L;, and A, be the matrix representative of v, with image P, and
kernel Ls.

(«<): Suppose that one of the conditions (a)—(e) holds.

(a) As (P, Ly) = (P, Ly) and ® is bijection then v; = vy. Since every vertex in A*(M3(GF(p)))
has a loop there is an edge between (P;, L1) and (P, Ls).

(b) The conditions imply that (P, L1), (P, Le) € &, so that vy, v € V(p)

If P, = P, then P, € Ly and P, € Lo, so AjAy = 0 and AsA; = 0. Combining last
two equation we get A; Ay = Ay Ay which means that there is an edge between v; and s,
hence also between (Py, L) and (P, Ls).

If L; = L, then again P, € Ly and P; € Lo, and we obtain the same conclusion.

(c)-(e) Each set of the conditions imply that P, € Ly and P; € Lo, so there is an edge between
(P, Ly) and (P, Ls), as shown above.

(=): Suppose that there is an edge between (P;, L1) and (P, Ls) in A. Then there is an edge
between v; and ve so we have A1 Ay = AsAy. If (P, L1) = (Pa, Lo) then condition (a) holds. So
suppose that (P, L1) # (P, Ly). Note that matrices A; and Ay are of rank 1, as their images
are P, and P, which are vector subspaces of dimension 1.

We claim that A; Ay = 0. Suppose this is not the case. Then rank(A;A;) = 1. This implies
that Im(AlAg) = Im(Al) = P1 and KeI‘(AlAg) = KGI(AQ) = LQ. As A1A2 = A2A17 we conclude
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similarly Im(A2A4;) = Im(A42) = P, and Ker(AyA4,) = Ker(A4;) = L;. Hence, P, = P, and
Ly = Ly which is in contradiction with (P;, L) # (P, Lg). This proves our claim.

From the above we get A; Ay = 0 and A A; = 0. This implies P, € L; and P, € Ly. We
now consider four cases:

(i) P € Ly and Py € Ly: If P, = P or Ly = Ly then the condition (b) holds. So, suppose
the opposite P, # P, and L; # Ly. This means that two different points P, and P, lie at
the same time on two different lines L; and Lo, which is impossible.

(1) Py ¢ Ly and P, € Ly: Since Py ¢ Ly and P, € Ly we have P, # P,. Similarly, as P, ¢ L,
and P, € Ly we get Ly # Lg. Furthermore, P, € L; N Ly and P, € Ly \ Ly. Hence,
condition (¢) holds.

(ZZZ) P el;and B, ¢ Lo: Since b ¢ Lo and P, € Ly we have P, 7£ b, Slmllarly, as P, ¢ Lo
and P, € Ly we get Ly # Lg. Furthermore, P, € L; N Ly and P, € L; \ Ly. Hence,
condition (d) holds.

(Z’U) P ¢ L, and P, ¢ Lo: Since P € Ly and P, ¢ L, we get Poe Ly \ L. Slmllarly, as
Py, € Ly and Py ¢ Ly we get Py € Ly \ Lo. This implies that P, # P, and L; # Ls, hence
condition (e) holds.

This finishes the proof. O

We remark that condition (a) of Theorem 7.1 describes the loops in A. Condition (b)
describes the edges between two different vertices in &, it means that two ones in the incidence
matrix are connected if and only if they lie in the same row or in the same column. Conditions
(c) and (d) describe edges between vertices in % and &, it means that 0 and 1 in incidence
matrix are connected if and only if they lie in different rows and columns, and the other two
entries of the 2 X 2 submatrix of 7},, which contains the two entries 0 and 1, are both equal to
1. Condition (e) describes edges between two different vertices in Z. It means that two zeros
in incidence matrix 7, are connected if and only if they lie in different rows and columns, and
the other two entries of the 2 x 2 submatrix of 7},, which contains the two zeros, are both equal
to 1.

Figure 7.1 shows all possible 2 x 2 submatrices of T, and the edges between their entries.
The red vertices in the Figure are vertices of type (B) and correspond to the zeroes in matrix
T,, while the blue vertices are vertices of type (E) and correspond to ones in the matrix 7.
Note that 2 x 2 submatrix of 7, cannot contain only ones because that would mean that two
different lines intersect two different points, which is not possible in the plane.
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Figure 7.1: Possible 2 x 2 submatrices of T}, and the edges between their entries.



Chapter 8
Description of AL (Ms3(GF(p)))

For convenience we recall Table 5.1 and Table 6.9. Table 8.1 gives the number of vertices of
each type and the number of matrices compressed into each vertex. In Table 8.2 entry in the
row (X) and column (Y) gives the number of vertices of type (X) in the neighborhood of a
vertex of type (Y), so the column (Y) of the Table 8.2 corresponds to the neighborhood of the
vertex of type (Y).

Table 8.1: Vertices of A'(M3(GF(p))).

CASE ‘ Number of vertices ~ Number of matrices compressed dim(A),
(A) 1 p 1
(B) (p* +p+1)p? plp—1) 2
©) | @ +p+Dp*p+1) plp—1)p—2) 3
(D) (P’ =Dlp+1) P(p—1) 3
(E) P +p+1)(p+1) pp—1) 2
(F) | (®+p+1)p’(p+1) p(p —1)° 3
(G) s(0* —p)(P* - p?) pP—p 3
(H) 30— Dp’? p*(p—1) 3

8.1 Properties of AY(M3(GF(p)))

Note that properties of (B)-(E) graph are described in Chapter 7. Here we describe the prop-
erties of the rest of the graph, according to the type of vertices. On the way we describe how
to construct the graph A*(M3(GF(p))), starting with (B)-(E) graph and adding to it vertices
of other type.

(C) Note that for p = 2 there are no vertices of type (C). Suppose that p > 3. From the Table
8.1 we see that there are ¢(p®+p+1)p*(p+ 1) vertices of type (C). From Table 8.2 we see
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Table 8.2: Neighborhoods of vertices of A'(M3(GF(p))).

\ (A) (B) (C) D) (E) (F) (G) (H)
(A) 1 1 T 1 1 T 1 1
(B) (P> +p+1)p? P+p+1 3 0 »? 1 0 1
©) | Y +p+ )PP +1) Lp*+p) 10 0 0 0 0
(D) (p*—1)(p+1) 0 0O 1 p—1 0 0 0
E)| P*+p+Dp+1) p+1 0 1 2p+1 1 0 0
F) | @+p+1)p*(p+1) p+1 0 0 P> 1 0 0
G| 36°—p)®* —p? 0 0 0 0 0 1 0
(H) p* = 1)p? p—1) 0 0 o 0 0 1

that there will be no (C)—(C) edges except the loop at on each vertex of type (C). Note that
every vertex of type (C) is connected to precisely 3 vertices of type (B) and by (5.6) these
3 vertices form a triangle, because a subring generated by one matrix is automatically
commutative. So, every vertex of type (C) is connected to the vertices of a unique triangle
of (B) vertices in (B)-(E) graph. Now, we show the opposite, that to every triangle of
(B) vertices correspond a (C) vertex, connected to them. Let vy = [A1]1, v2 = [A2]; and
vy = [A3)1 be 3 different vertices of type (B) forming a triangle. Since matrices A;, A
and As are diagonalizable and they commute, they are simultaneously diagonalizable, i.e.,
there exists invertible matrix S such that A; = SDS™!, Ay = SDy S~ and A3 = SD3 S L.
Take a set
D = {SDS™': D is diagonal }.

Obviously, D is a subring and it is an isomorphic copy of subring of all diagonal matrices,
generated by any diagonal matrix with three different elements on the main diagonal.
Generators of D are compressed into a vertex v of type (C). Since A;, A; and Aj are
elements of D, subrings (A;)1, (As); and (As); are subrings of D, i.e., vy, vy and v3 are
connected to v. As a consequence, the number of triangles of vertices of type (B) is equal
to the number of vertices of type (C), which is equal to (p* 4+ p+ 1)p*(p + 1).

So, to add vertices of type (C) to the existing graph, for every triangle of vertices of type
(B) we add one vertex of type (C), connect it the vertices of the triangle and put a loop
on the vertex of type (C).

From the Table 8.1 we see that there are (p* +p+ 1)p*(p + 1) vertices of type (F). From
Table 8.2 we see that there will be no (F)—(F) edges except a loop on each vertex of type
(F). Note that every vertex of type (F) is connected to precisely one vertex of type (B)
and one vertex of type (E). From (5.19) we see that those two vertices of type (B) and
(E) are connected by an edge, because a subring generated by one matrix is automatically
commutative. So, every vertex of type (F) is connected to the endpoints of a unique (B)-
(E) edge. From Table 8.1 we know that the number of vertices of type (B) is (p?+p+1)p?



and from Table 8.2 we have that one vertex of type (B) is connected to p + 1 vertices of
type (E) so, we have in total (p?> +p+ 1)p?- (p+ 1) (B)—(E) edges. Note that we have
the same number of vertices of type (F), hence, the endpoints of every (B)—(E) edge are
connected to a unique vertex of type (F).

So, to add vertices of type (F) to the existing graph, for every (B)—(E) edge we add one
vertex of type (F), connect it to the edge endpoints and put a loop on the vertex of type

From the Table 8.1 we sce that there are (p® — 1)p® vertices of type (H). From Table
8.2 we see that there will be no (H)-(H) edges except a loop at each vertex of type (H).
Also, every vertex of type (G) will be connected to the unique vertex of type (A) and to
one vertex of type (B). On the other hand, each vertex of type (B) has @ vertices of
type (H) in the neighborhood, see Table 8.2.

So, to add vertices of type (H) to the existing graph, we first partition the set of vertices
of type (H) into (p* + p + 1)p? parts, each containing @ vertices. Note that we have
the same number of parts as the number of vertices of type (B). Now we put a loop on
every vertex from one part, connect all vertices from this part to a fixed vertex of type
(B). Then repeat the same procedure for the next part and vertex (B), until we spend all

parts and vertices of type (B).

From the Table 8.1 we see that there are (p® — 1)(p+ 1) vertices of type (D). From Table
8.2 we see that there will be no (D)—(D) edges except a loop on each vertex of type (D)
and that every vertex od type (D) will be connected to precisely one vertex of type (E)
and to a unique vertex of type (A). On the other hand, from Table 8.2 we see that one
vertex of type (E) has p — 1 vertices of type (D) in the neighborhood.

So, to add vertices of type (D) to the existing graph, we first partition the set of vertices
of type (D) into (p?> +p+ 1)(p + 1) parts, each containing (p — 1) vertices. Note that we
have the same number of partitions as the number of vertices of type (E). Now we put a
loop on every vertex from one part, connect all vertices from this part to a fixed vertex
of type (E). Then repeat the same procedure for the next part and vertex (E), until we
spend all parts and vertices of type (E).

From the Table 8.1 we see that there are 5(p® — p)(p® — p®) vertices of type (G). From
Table 8.2 we see that there will be no (G)—(G) edges except a loop on each vertex of type
(G) and that every vertex of type (G) is connected by an edge to the unique vertex of
type (A), see Table 8.2.

So, we add 3(p* — p)(p® — p?) vertices of type (G) to the existing graph and put a loop
on every vertex of type (G).

We add the unique vertex of type (A) and connect it to every other vertex and put a loop
on it.
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8.2 Construction of AY(M;3(GF(p)))

We construct the compressed commuting graph of the ring M3(GF(p)) as follows:

1.

7.
8.

We construct (B)-(E) graph described in Chapter 7. The vertices of type (B) correspond
to the zeroes in the incidence matrix (7.3) of the projective geometry PG(2,p) and the
vertices of type (E) correspond to ones in the same matrix. The edges between these
vertices are presented in the Figure 7.1.

. If p > 3 then for every triangle of vertices of type (B) we add one vertex of type (C) and

connect it the vertices of the triangle, otherwise omit this step.

For every (B)—(E) edge we add one vertex of type (F) and connect it to the edge endpoints.

p(p—1)

For every vertex of type (B) we add %5

vertex of type (B).

vertices of type (H) and connect them to the

For every vertex of type (E) we add p — 1 vertices of type (D) and connect them to the
vertex of type (E).

We add z(p* — p)(p® — p?) vertices of type (G).
We add one vertex of type (A) and connect it to every other vertex.

We put a loop on every vertex.

With this step, the construction of compressed commuting graph of the ring Ms(GF(p)) is
finished.
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Chapter 9

Commuting graph of M3(GF(p))

In this chapter we demonstrate how compressed commuting graph can be used to describe
the ordinary (non-compressed) commuting graph. For 2 x 2 matrices over a finite field F the
structure of the commuting graph I'(My(F)) is described in |2, Theorem 2|. In particular,
this graph is a disjoint union of |F|*> + |F| + 1 cliques of size |F|? — |F|. For 3 x 3 matrices
the description of the commuting graph I'(M3(TF)) is still an open problem. The graph was
partially described in [22, Lemma 4.1] where the authors showed that the graph has only one
connected component that is not a clique. Furthermore, every connected component that is a
clique equals F[A]\FI where A is a non-derogatory matrix with irreducible minimal polynomial
such that there is no intermediate field between fields F and F[A]. Note that F[A] is a field as
minimal polynomial is irreducible.

With the results of this thesis we can now completely describe the graph I'(M;3(F)) in the
case when F = GF(p). We will do this using the so-called "blow-up" process that was originally
used for zero-divisor graphs in [16, 12].

We start with A*(M3(GF(p))) described in Chapter 8. To obtain the graph T'(M3(GF(p)))
we first remove the unique vertex of type (A) and all edges incident to this vertex. Then, from
every vertex we remove the loop. In the final step, we "blow-up" each vertex into several copies
using the numbers from Table 8.1. In particular, for a vertex v of a certain type we can find
in Table 8.1 the number of matrices that were compressed into vertex v, namely |[A];|, where
A is a matrix representative of vertex v. We replace vertex v with a clique of size |[A];| and
connect every vertex of this clique to all other vertices that vertex v was connected to. Once
we do this for all the vertices we obtain the graph I'(M3(GF(p))).

Note that after removing the unique vertex of type (A) along with all of his edges and all
the loops from A'(M3(GF(p))), the graph breakes into several connected components. Some
of these components are single vertices, and these are precisely vertices of type (G) and there
are 5(p* — p)(p* — p?) of them. After the "blow-up" process these become cliques of size p* —p
in I'(Mj3(GF(p))). There is only one additional connected component containing all the other
vertices. This is in accordance with the partial description in [22, Lemma 4.1].
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HN3JABA O AYTOPCTBY
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HacnoB paga KowmmpecoBanu rpadoBH KOMYTaTHBHOCTH NPCTEHA M JPYTUX anredapcKux
CTPYKTYpa

HacnoB pana Ha enriieckom jesuky Compressed commuting graphs of rings and other algebraic
structures
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DXma nmokTopcka mmcepranmja, y IjeIMHM WIM Y AWjETOBMMA, HHje OWIa HpEeUIokKeHa 3a
nobujame OWIIO KOje AMIIOME MpeMa CTYIUjCKUM MporpaMuMa JAPYTrUX BUCOKOIIKOJICKUX
yCTaHOBA,
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Hanomena: OBaj TEKCT HUj€ CaCTaBHU JIMO M3jaBe ayTopa.

Bumre nadopmanuja Ha nmuHKy: http://creativecommons.org.rs/



H3jaBa 3

N3jaBa 0 MIEHTHYHOCTH IUTAMIIAHE M €JIEKTPOHCKE Bep3uje
JAOKTOpPCKe qucepraumje

Nme u npe3ume ayropa NBan Bama bopoja

HacnoB pana KomnpecoBanu rpadoBu KOMyTaTUBHOCTH MIPCTEHA U IPYTUX alre0apCcKuX CTPYKTypa

MenTop Hp Huk Cronap

W3jaBipyjeM na je mTaMmaHa Bep3dja MOje JOKTOPCKE AWCEepTandje WACHTHYHA EJIEKTPOHCKO]
BEP3HUjU KOjy caM IMpeaao/ia 3a IUTUTAIHU PENno3uTopujyM YHuBepsurera y bawoj Jlymu.

[Tornuc nokropanTa
VY Bawo0j Jlyuu, nana 19. jyna 2025. rogune WBan Bamwa bopoja, c.p.
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anDOAHO-MaTeMaTMHKM ax##me‘r

Booi __[9-4. 313-1 /25
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BAHA NIYKA

rog.

M3BJELLTAJ
3a oyjeHy ypahene 0okmopcke oucepmayuje / GOKMOPCKO2 yMjemMHUYKO2

pada?

1. NOAAUMO KOMUCHIN

WMEHOBAD K( 1jy: HayuHo-HacTaeHo Bujehe MpupoaHo-matematukor Gakyntera

Harym umenosarba komucuje: 14. maj 2025.

Bpoj ognyke: 19-3.65/25

| YraHosuM KoMmucHje:

1. Hwukonuh BojaH i AoUeHT

Mpesnme ¥ nme 3Batbe
Martemaruka, Anre6pa u reometpuja -
Hay4Ho nosbe 1 yxKa HaydHa/ymjeTHuKa 06/
_MpupopHo-matematuikm Gakyntet, Vrne. y barwoj lyun | npeacjepumk
YcTanosa y Kojoj je zanocaer/a DOyHKUMja Y KOMUCH]K
2. boxosuh Bragumup penosHu npodecop
ftpesume u ume 3garbe
Maremartuka, Anreyﬁypa v reomeTpuja
HayuHo nosbe W yKa HaysHa/ymierHuuxa
_MNpupopHo-matematuyky darynter, Yuus. LipHe lope unaH ) il
Ycranora v Kojoj je 3anocien/a QyHruKja y Komucujn
3. _Rokon bykosiuek [lamjaHa | sanpeammnpodecop

Mpesume v wvie 3parbe

~Martemaruka, Anrebpa u reomeTpuja

Hayaso nosbe 1 yska HayuHa/ymjeTHuura o

_EkoHomcku dakynTer, YHuB. y Jbybrbatn

y Ba y Kojoj je 3anoc

| unaH

DYHKUMA Y KOMUCH]U

4. [Dumutpuje Ysokuh | pouewr

Mpesnme 1 nme 3Baibe

MHdopmaumoHe Hayke, NHdopmauuoHe Hayke u 6uonHdopmaTika (passoj codreepa)

HayuHo no/be u yika HayuHa/ymjerHuuka oBnacr

MpupoaHo-matematiky dakynTer, YHus.

0j0j} j€

y bamwoj/lyun
i/a

gjz

1Y jaibeM Texcet Y JAUCePTAIn]a / YMJeTHUUKH pax’ .
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3anocien/a DyHKUMja ¥ KOMUCUK

2. NOAAUM
| Vime, ume jepgHor popureba, npesume: Uead Barwba {Mutap) bopoja
,Bgaqw pohetrsa: 21. jyn 1978. '
Mjemu v pp#asa pohersa: MpKoruh Fb;,b,, Penybnuka Cpnc,lv;; bocHa 1 XepuerosuHa
| 21. Cryauje npsor 4MKAYCa WK OCHOBHE CTYAM|E UAKM UHTETPUCaHE CTyauje
loguHa ynuca: 1997. loguHa 3aBplueTra: 2005. S{f:f:f::;i?f% 9,00
| YHusepauTer: Q;il;‘:‘aepsmeT LipHe lope
Dakynter/Akagemuja: anDOAHO-N;‘;;emaTMHKM dakynter ‘
C%;ﬁﬁjcw nporpam: MatemaTuka

Creveno seare: unnoMmupanun matemartudap, 6poj aunnome 245, Pjewerwem MuHUCTapcTBa npocejeTe
. v KyAType Penybauke Cpnicke 6poj 07.023/613-509/14 og 3. Hoeembpa 2014. gunnoma je
- HoCTpudmKOBaHa.

| 2.2, Cryaunje apyror uMrAYCa AWK macTep cryauje

| ; . | MNpocjeuna oujexa
 TognHa ynuca: | 2014. | FoguHa 3aBpuieTka: | 2015. | o 9,80
| | | TOKOM CTyaumja:

| YHuse pauteT: YHusepsurer LipHe lope

- dakynter/Axkanemuia: PUPOAHO-MaTEMATUUKN GaKyaTeT

- Crypuickn nporpam: NpuMujerbeHa maTemaTka U pauyHapcKe Hayke

| Hazus 3aBpluHOr paga Apyror UMKAYCa WK Macrep Tese, gatym ogbpane:

LANTOPUTMM 33 KOHCTPYKUM]Y penpeseHTalmja 1 KapakTtepa ceMu-gupeKkTHOr npoussoga rpyna“,
- NMoaropuua, 30. anpun 2015.

| Vaka HayuHa/ymjeTHnuKa 06nacT 3aBpLUHOT Pajla APYror WHKAYCa UK MacTep Tese:

. PauyHapcKe Hayke

| CreyeHo 3satbe: Marucrap

2.3.  Cryamje rpeher uuknyca

: | Bpoj ECTS 6ogoBa | ——
| Foguna ynuca: 2019. | ocTBapeHux go 135 S o 10.00

| ToKOM cTYAMja:
| capa: !




" between rank 1 modules in Grassmannian cluster category, Sarajevo

Qarynrer, wja: MpupogHo-maTtemaTuuku dakynteT, YHUBep3uTeT y baroj flyuu

- Cryanicku nporpav: MatemaTtuka

HaBoherem DOI G

IoB&, KOPUCTHTIH MCTH C

A O HayMHOM Pajy ! LuratHa 6

@ Boroja, _Ivaprap]a; Kokol ‘IBQkoxfsek, Damjana; Stopary Nik When Web of Science
1 does an infinite ring have a finite compressed commuting graph? J.

' Algebra Appl., in press (2025), art. 2650148, 18 pp. Ngret dlisotion
Boroja, Ivan- Vanja Dorbidi, Hamid Reza Kokol Bukovsek Dam; ana
2. Stopar, Nik Compressed commuting graphs of matrix rings. Linear Whook SCIence

- Multilinear Algebra, in press (2025), 19 pp. _ CO?? 99?130“03

- Bogdani¢, Dusko; Boroja, Ivan-Vanja, Indecomposable Modules in |

the Grassmannian Cluster Category CM(B_(5,10)), Kragujevac ~ Web of Science
Journal of Mathematics, Volume 48(6) (2024), Pages 907-920  Core Collection
https //’1m1 pmi I\g ac. rsfkj m/en/mdex php‘?page—accepted-papers

Bogdamc Dusko; Beroja, Ivan-Vanja, Decomposable extensions

Journal of Mathematics, Vol.18 (31), No.2 (2022), 297 — 312 DOI: |
10.5644/SIJM.18.02.10

a[IHOCT Pafia YKo} HayuHoj/ymieTHMUKO] obnacTu Kojoj npunaga npeamer |

DEMMBabA JIOKTOPCKE AucepTaumje

3. YBOAHU AUO OLJEHE AUCEPTALMIE / YMIETHUYKOT PAIA
1. KomnpecosaHu rpadosu KOMYTaTUBHOCTY NPCTEHa M APYIUX anrebapckux CTpyKTypa
2. MaremaTtuka, Anrebpa v reomeTpuja
3. 24. oktobap 2024. Opnyka CeHaTta YrusepauTeta y bawboj /lyuu 6poj 02/04-3.2250-79/24
4. 26. neuembap 2024. Ognyka CeHaTta YHusep3auteTa y barboj flyuu 6poj 02/04-3.2747-49/24
5. JAdwucepraumja je HanucaHa Ha 87 cTpaHuWla, Of Yera r1aBHu auo paja obyxeata 77 cTpaHuua,
nogunjerseHux Ha 10 nornasma:
Yeopg (cTpaHuue 1-4)
MpunpemHa paamarparba (cTpaHuue 5-14)
KomnpecosaHu rpad KOMyTaTUBHOCTM NPCTEHa ca jeiuHnuuom (cTpaunue 15-18)
Komnpecosanu rpad komytatusHoctu npcrena M, (GF (p) (crpanuue 19-28)
Cxyn 4BopoBa KomnpecosaHor rpada komyratusHoc AL (M3 (GF(p)) (cTpanmue 29-46)
Cycjem usoposa rpada A (M3 (GF(p)) (ctpanmnue 47-60)
Noprpad HAYKOBaH CKYNOM YBOPOBAa V(B) U V(E) {cTpanuue 61-68)
Onwuc rpada AL (M3 (GF (p)) (cTpanmue 69-72)
Mpad komyTatueHocTn npcreHa M3 (GF (p) (ctpanuua 73)
10 Nutepatypa (cTpanuue 74-77)
6. [ucepTauuja je HanucaHa Ha eHIIECKOM je3uKy, uma 87 cTpanuua A4 dopmata 1 nogerbeHa je y
10 nornaeswa. Mounkbe yBOAOM KOjU ONUCYje TPEHYTHO CTakbe y 06n1acTh, unrbese 1 CTPYKTYPY

We NO;EWN R

' CKIAagY ¢a UiaHOoM 34 n‘.[)ubh.u;l CIVauDama Ha cuchc‘»,\d HHUKIYCY CTVIH[A, u:umw'}un 2022. TOJIHHE,
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4. YBOZ, VI NPETIEQ JINTEPATYPE
1.

s AR TEROC. - <= ) ) o s il

Auceptauuje. lMornas/be o npeAMMUHapHUM peaynTatuma nofcjeha Ha HEKOAMKO pesynTaTta U3
Teopuje maTpuua Koju cy kopuwhenu y guceprauunju. Tpehe nornasrbe ysoam rnasHu objexar
UCTPaXKHBatba M CYMMPaA HeKa No3HaTa ucTpaxkusarba. lpad npcreHa matpuua 2x2 Hag NpocTUM
no/bem onucyje ce y 4eTBPTOM NOFaBMbY, oK ce rpad npcTeHa MaTpuua 3x3 Hag NpocTUM
nosbem Ofucyje vy nornas/buma 5-8, NoyeBLLM o4 Norias/ba o TjeMeHuMa, Norasmba o
KOMLIMAYUMME, U [1Ba 110T/1aB/ba Koja onucyjy rpad v uenuHu. [luceprauuja HacTaB/ba AeBeTUM
rnornassbem, Koje faje onuc yobuuajeHor rpada KOMYTaTMBHOCTM NpcTeHa maTpuua 3x3 Hag,
NPOCTUM No/bem Kao npumjeHy. fleceto nornasme je 6ubnuorpaduja koja caapsku 41
pebepenuy. [lucepTauumja caapsku 13 Tabena u jegHy ciuky.

VjeTHUYKOT pana.

e Gpaja

HAYKOTD RDada y3 Hae

/ ymjeTHuuKom paay:

e3HO YEBYUy]yhi

TERATYPHUX HaBO

lMpeacrasmarbe npobnema: [ocberwux roauHa, senuku 6poj ucTpasmearba nocseheH je
pasHum rpadoBrMa MHAYKOBaHUM anreGapcKuM CTPYKTYpama, Kao LUTO Cy NPCTEHOBM, rpyne

utp. Oso wuctpausarbe je ¢oKycupaHo Ha ynotpeby anata us Teopuje rpadosa 3a

UCTPaXknBatbe CTPYKTYPHUX CBOJCTaBa anreGapckux CTPYKTYPa. JefaH of HajsaXKHMjuX npumjepa
je rpad KomyTaTMBHOCTM NpPCTEHa, KOjU NpuKasyje penaumjy KOMyTaTUBHOCTM. 3Hauaj oBOT

npUcTyna je ounrneaaH us 6pojHUX HOBUX pesy/iTaTa O LeHTPann3aTopuma u KOMYTaTUBHOCTH Y |

NpPCTEHOBUMA MATPULLA KOje je MpousBeo, jep npeacTae/batbe KOMYTaTUBHOCTU rpadom Aaje
UCTpaxkusauuma BpujedHe yBUAE Y CBOjCTBa Koja 6M MHade ocTana Heeua/busa. [amu |

Hanpenak MOCTUTHYT je y ciyvajy rpada fjenvnaua Hyne nNpcTeHa, TAaje je opurHanHu rpad {

KOMIpecoBaH Kako 61 MoCTao Maku M TUME NaKiuM 3a ynpaemare. HepasHo je yBefieH HOBU |

AN KomrpecosaHor rpada fjenunaua Hyae NpcTeHa, Koju nokasyje mHoro Gosbe Bese ca |

CTPYKTYpOM MpcTeHa, yriasHom 360r unibeHule fAa uHAyKyje yHKTOp M3 KaTeropuje

npcTeHoBa Y Kateropujy rpadosa. OBa KOMNpecuja joll YBEK HUje UCTpakeHa y cnyuyajy rpada

KOMYTaTUBHOCTH.

Mpeamert uctpaxkumeatba: 'pad KOMYTaTUBHOCTU U KOMNPECOBaHM rpad KOMYTaTUBHOCTU KOjU
onucyjy pesiaumjy KoMyTaTuBHOCTH U3Mehy enemeHaTta anrebapcke CTpyKType.

Uum uctpaskusarba: Jegad o NpeUX UWbeBa UCTPAXUBatba je Npolmnperse meToze ca rpagosa |

Ajenvnaua Hyne Ha rpadoBe KOMYTaTUBHOCTM U yBohere komnpecuje rpada KOMYTaTUBHOCTH

npcTeHa Koja unAaykyje ¢yxriop. Opymv uwb je ucTpamusarbe CBOjCTaBa yeBepeHor rpada, |
HapouMTO fa ce OATOBOPM Ha nuTare fAa u GeckoHa4yaH NpPCTeH MOMXEe WMaTWU KOHauyaH |
KomnpecosaHu rpad KOMYTaTMBHOCTM W Kafda ce TO gewasa. [NaBHU uwb AucepTauuje je |

UCTpaXKMBatbe KOMMpecoBaHOr rpadga KOMyTaTUBHOCTU NpCTeHa maTpuua peaa 2 v 3 Hag |

npoctum nomem GF(p) 3a 6uno koju patm npoct 6poj p. CBU OBM UW/BEBU CY MOCTUTHYTH, @ |
Pe3yaTaTh Cy KOHLUM3HO NpeaCcTaB/beHun Y AucepTaumjn.

Xunorese ncrparkusamba:

1. 3a rpad komyTaTMBHOCTM anrebapcke cTpykType moryhe je npoHahu Komnpecujy Koja aaje |
Hajmarbn moryhin rpad TakaB fa cy ucnolutoBaHa ¢yHKTOpMjanHa cBojcTBa ogrosapajyhe

anrebapcke CTpyKType.
2. beckoHauyHa anrebapcka CTPYKTypa MOMe UMaTh KOHayaH KoMMpecosaHu rpad |




3. Ogpehere BaxHe pamunuje rpadosa Kao WTO cy NOTNYHU rpadoBM, 3Bje3gacTu rpadosu U
4p. mory 61Ut KomnpecosaHu rpadoBM KOMYTaTUBHOCTU Heke anrebapcke CTPYKTYpe.

4. Hekn npcrenn u anrebpe cy Ao Ha usomopdusam jeauHcTseHo ogpehenn cBojum |
KomnpecoBaHum rpadom KOMyTaTUBHOCTM, KaO Ha NPUMjep NPCTeH mMaTpuua 2x2 Hag Mo/bem |
Fanoa ca p enemeHara, rgje je p npoct 6poj.

5. Moryhe je y notnyHocT onucati KoMnpecosaHu rpad KOMyTaTUBHOCTM anrebpe maTpuua
Masor pefa Hag, No/bem Mase KapauHaaHOCTH.

Y pauceprauuju je notephena sehinHa HasefieHux xunotesa. Mpsa, Apyra, Apyry AUO YETBPTE U
neTa XxMnotesa cy y NoTnyHocTH notephene Aok cy Tpeha v npeu 4no YeTspTe xunoTese
BepudrkoBaHu y npatehum pagosuma KaHauaaTa.
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Pesyntati npeTxofHUX UCTparkKuBatba:

lpad xomyraTMBHOCTM onucyje penauujy KomytatusHoct uamely enemexarta anreBapcke
cTpykTYpe A. Mo gedunuuujv, 1o je npoctu rpad unju cy 4BOPOBM HEULEHTPANHU enemeHTH
anrebapcke CTPYKType, a [Ba pas/inMuUTa 4YBOpa Cy nosesaHa ako oarosapajyhu enemeHTtn |
KomyTupajy y A. lpsu nyT nojam rpada KOMyTaTMBHOCTU ce nomurbe 1955, roauHe y paay [15],
y nokywajy ga ce Kaacudukyjy KoHadHe npocte rpyne. lNpuje oko 20 roguHa, Takohe je |
peduHucaH 3a npcreHe u gpyre anrebapcke crpyktype, [2,1]. Op Tapga My MCTpaXkuBauun |
nocsehyjy Benuky naxiby, npoydyasajyhu nosesaHoct rpada, amjameTtap M Apyra CBOjcTBa, |
[4,21]. BaxkHO nuTarbe y 0BOj Teopuju je npobnem usomopdusama, Koju nocTas/ba NuTarbe Kaja ,
cy usomopdHe anrebapcKke CTPyKType ako cy usomopdHu oprosapajyhu rpadosu |
KOMYTaTUBHOCTU. ;
W gpyra csojctBa anreBapckux CTpykTypa Takohe mory 6utM onucana rpadosuma. Tako cy
Hactanm Kejnujes rpad, rpad gjienvnaua Hyne, reHepuiuyhu rpad, Totanyu rpad [5] v ca. '
loauune 2002. y pagy [37] yseneH je nojam KomnpecosaHor rpada gjenvMaaua Hyle ca UWbem
Aa ce rpad yuMHU MatbUM M CaMUM TUM NIaKLUKMM 3a UCTPaXKUBAbE, a [a UM U gabe Byge
onucaHa CTpyKTypa gjenunaua Hyne. Y paposuma [16, 17] us 2001. roauHe npeseHToBaH je

MOAMGPUKOBaHM HaYuMH KoMNpecuje Koju y3uma y o063up He camMo NpCTeHe Hero u
xomomopdusme usmehy npcreHa.

W BONPU

W oerer VTR e TIVIT S
MM TUS0 FHUING




pasHum MaTematMukuM Yaconucuma ca SCl nucte Kao U yybeHMLM pPeHOMUPaHUX
YHUBEP3UTETE, C 063MpPoM 3 je UCTPaKMBarbe U3 TEOPUjCKe MaTeMaTHKe.

2. [lucepraumja KOPUCTM LIMPOK CNEKTap METOAA M3 PasAMUMTUX MaTeMaTUuKuX o6aactu u |
Komb6uHyje ux Kako 61U ce mocTurao riasHu UWb. Ose obnactn YK/byUyjy Teopujy rpadosa,
Teopujy rpyna, 1iMHeapHy anre6py, Teopujy KOHauHWX NOsba, KOHaUYHe NPOjEKTUBHE NPOCTOpe
KombuHaTopuky. OBe 06nacTU uYMHE MHTerpanHe Aujenose flOKasa [NaBHOT pesynTaTa
auceprtauuje.

MeToza komnpecuje u meTopa ,npowmpersa” rpadosa npunarohere cy U3 caydaja rpada |
AeNvnaua Hyne npcreda. TjemeHa rpada AI(M3(GF(p)) Tj. KomnpecosaHor rpada
KOMYTaTUBHOCTM NpcTeHa matpuua 3x3 Hag npoctum nosbem GF(p) cy onucaHa pasmaTparem |
Cly4ajeBa 3aCHOBaHNX Ha CIMYHOCTM MaTpuua. MaBHM anaTi Koju cy KopuwwheHn TOKOM 0BOT

Kopaka 6unu cy anatu smuHeapHe anrebpe, Kao WTO Cy COMNCTBEHE BPEAHOCTU M COMCTBEHU |
BEKTOpH, IMHeapHU NPOCTOPU U tbUXoBe AuMeHsuje v HopgaHosa popma matpuue. Takohe je |
6uno notpe6HO NosHasarbe TEOPHje KOHAUHUX MOJba U ynoTpeba nonMHoMa. 3a cBaku uBop

rpada, cKyn berosux cycjeaa MCTpaxueaH je Kopuiiherem MaTpuuHOr pauyHa u
Kombunatopuke. Jesrpo rpada A'(M3(GF(p)) onucaHo je ycnoctasmarvem Gujekumje ;
usmehy ysoposa rpada 1 napoea Tauaka-AMHMja y NPOjeKTUBHO] PaBHU Haf, GF(p), ocnamajyhu

ce Ha MaTpULy MHUMZEeHUnje. |

a. lpumujerbeHe meToge ucTpaxwuBarba Cy afeKksaTHe, jep cy pesyatupane pjelierbem
npo6nema onuca rpada KOMyTaTUBHOCTV NIPCTeHa MaTpuLia 3x3.

b. Mpso6uTHM NaH UCTpauBarba CIPOBEEH je Y LjenocTH.

c. CnposefieHn 06um CTpakuBatba je [I0BO/baH 3a JOHOWEHe MOY3[aHNX 3aK/byyaka.

d. Y uctpaxusatby Huje KopuLLTEHa CTaTUCTMYKa oBpaga pesynTaTa.

(I |

# { (& maTepuiana Koju | pahusan,

.}

je BaxkHo ouMjennti croepehe:

METoO e UCTPaXKMBatba aJeKea

THE, JOBO/HHO Ta4YHE U CaBPEMEH®, MM3a]

STCKOM OKBUPY,;

CTiaHa UCTRaMnearha;

Dlierhe NoY34aHnX 3aK/byYaka unu je notpebHo npow

Ha, ako je koputitheHa npu Z}@i}é,{l% £

6. PE3Y/ITATM M HAYYHU/YMIETHUNKM IONPUHOC UCTPAMBARLA

1. TnasHu ponpuHock uctparkusarba cy cieaehu:

e TloTnyH onuc KomnpecosaHor rpada KOMyTaTUBHOCTH NPCTeHa MaTpuLa 3X3 Hag NPOCTUM
nosbem GF(p), y3 anroputam 3a toerosy KOHCTPYKLIM]Y.

e  Onuc yobuuajeHor rpada KOMyTaTUBHOCTU NPCTEHA maTpuua 3x3 Hag npoctum nosbem GF(p).
Oso je 6uno oTBOpeHO N1Tatbe of MOMeHTa yBoherba rpada KOMYTaTUBHOCTH.

e Yeoherbe HoBOT TUNa rpada MHAYKOBAHOT MPCTEHOM, Tj. KOMNPecoBaHor rpada
KOMYTaTUBHOCTH.

* VYHanpehere MeTOAa KOPULUTEHUX 33 ONUC KOMMPECOBaHOT rpada KOMYTaTUBHOCTU npcreHa
matpuua 2x2 Hag norem GF(p).




2. PesynTaTti cy jacHO NPUKasaHW, NPaBUAHO, TOTUYHO M jacHO TyMadeHu. [loBo/baH HUBO
KPUTUYHOCTY noTeplyje UntbeHULa [ je CTYAeHT CNPOBEO CTYAMO3HO UCTPaXKUBakbe OBE
TemaTuKe WTO je peaynToBano objae/buBatbem ABa pafa y Yaconucuma Ha SClancru.

3. Pesyntatu gucepTaumje Mory ce NoKasaT1 KopucHuM y 6yayhum uctpakmsarbuma. KoHKpeTHO,
passujeHe meToge nomohu he pa ce reHepanuayjy pesyntatu Ha maTpuue BUILET pesa Haj,
reHepanHujum nobuma. Takohe, pesyntatn 6u mornu 6utm ynotpujebrbeHn 3a noKywaj
pjewasara npobnema nsomopduama 3a NpcreHoBe MaTpuLLa.

, TOTHYHO ¥ JaCHO TYMaYeHH,

W j& CTYZAEHT NPU TOME UCNO/baBas AOBOHO

7. 3AK/bYHAK U NPUIEQNOT
1. Kawgupat je wuctpaxusao aktyenaH npobnem u AobujeHn pesyrTatM  cy KOpeKTHOT
vHTepnpetupaHu. Ouekyje ce fJa HOBOPAa3BMjEHW KOMMPECcOBaHW rpad KOMYTATUBHOCTU

NOACTakHe HOBa uCTparuBatba y obnacTu npcrTeHa Matpuua U penauuje KOMyTaTUBHOCTH |
Kopuctehu anate Teopuje rpadosa.

2. byayhu pa je KaHgupaT nNokasao TeMe/bHO MNO3HaBarbe NpeAMETa WCTPaKWBarba, Te y
NoTNyHOCTM ofrosopuo Ha npobnemaTvky Koja ce pasmatpa y auceptaumju, Komucwuja
npeanaxe HayuyHo-HactasHom sujehy [MpupogHo-maTematnukor dakynTeTa YHusepsuteta y |
baroj Jlyun u CeHaty YHusepsuteta y bawoj Jlyuu ga ce yceoju oBaj U3sjelltaj U AOKTOPCKA !
OucepTaumja nog Hasmeom “KomnpecoBaHW rpadoBM KOMYTAaTUBHOCTM MNpCTeHa WM OPYIUX
anrebapckux cTpykTypa‘’* KaHaugaTta mp. MeaHa Barbe Bopoje mpuxsaTu, Kac W ga ce onobpu |
jaBHa opfpaHa oBe aucepTalmje npes KOMUCUOM Y UCTOM caCTaBy.i |
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Ume u npesume, mumyna u 3saﬁae{

YiaH

M34BOJEHO MULLIJBEMDE: YnaH KomucKje Koju He XKeau fa noTnuuie u3BjeiuTaj jep ce He crame ca

Mii/bEDEM BENMHE YAaHOBa KOMKCK|e AY)KaH je fa v u3sjelitaj yHece obGpasnomerbe, 70 jecTt
paznore 300r KOjUX He XKeAK fa rnoTnuile uasjelraj.

Y npunory M3BjewiTaja QoOCTaBuTH:

1. Opgnyry YmjeTHUUKO-Hay4YHO-HacTaBHOT / HayuHO-HacTaBHor Bujeha wianuie YHUBepauTeTa o
MMEHOBakbY KOMUCH]e 3a oljeny ypaheHe JOKTOPCKe aucepTauuje / AOKTOPCKOr
yMjeTHWUKOT paga u jasHy oabpany;

2. Ognyry YMeTHUUKO-HAYUHO-HACTABHOT / HayyHo-HacTasHor Bujeha unanuue YuusepauteTa
O NpuUXBaTakby W3BjellTaja KOMUCHKje 3a oujeHy ypaheHe NoKTopcke auceprauyumje /
OOKTOPCKOT YM{RTHUYKOT pafa 1 jaBHy oabpany;

3. WssjewTaj komuncuje sa oujeHy ypaheHe gokTopcke guceprauuje / AOKTOPCKOT YMjeTHUYKOT
paga u japny onbpany — O6pasay 3;
4. JlokTopcka guceptaunja y NAD dopmarty; =

5. VYsjepere NpogekaHa 33 HaYYHOUCTPAXKUBAYKK Paa 1 PA3B0oj O NPOBjepr OPUTMHATHOCTU
[OKTOpCKe JucepTauuje nyTem 3BaHUYHOr codrBepa 3a OTKPUBaKLE NAarnjapusma;

6. MWsiasa o avropciBy;

7. Wsiaea kojom ce oenawhyie YHusepauteT v barboi /vy Aa SOKTOPCKY AncepTaunj
OOKTOPCKN YMETHUYKM Paf YYUHU [aBHO AOCTYNIHUM;

8. Maiaaa O MOEHTUYHOCTK LiITamMmiaHe M e/1eKTPOHCKE BEQ3Mie AOKTOPCKe QMCEQT&QVHE /

[OKTOPCKOT YM|eTHUYKOT paza.
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