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Резиме
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интереса се назива проблемом (r|p) хаб–центроида са цјеновним надметањем. Представљен је
математички модел за проналажење одговарајућегШтаклберговог еквилибријума као нелинеа­
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рни мјешовито–цјелобројни математички програм у два нивоа.  Показано је да у овој поставци
постоји јединствен коначни Бертранд–Нешов цјеновни еквилибријум. На основу тог резултата
доказано је постојање Штаклберговог еквилибријума, представљене су нове једначине за
најбољу цјеновну реакцију, и дата је карактеризација оптималних рута. Такође, проблем
је разматран из угла рачунске сложености. Пошто је показано да је NP–тежак, коришћење
метахеуристика за његово рјешавање се наметнуло као природан избор. Конструисани су
алгоритми на основу алтернацијске хеуристике и метода промјенљивих околина. Што се
тиче друге компаније–такмаца, показано је како се њен модел може линеаризовати. Рачунски
огледи су извршени над стандардним у литератури CAB­инстанцама. Резултати емпиријског
исљеђивања су детаљно дискутовани, истакнути су утицаји различитих параметара, и издвојени
неки интересантни увиди. На крају, размотрени су и неки од могућих будућих праваца за
наставак истраживања.

Кључни појмови: размијештање разводних тачака, формирање цијена, логит­модел, Штакл-
бергов еквилибријум,  Бертранд–Нешов цјеновни еквилибријум, рачунска сложеност, рефо-
рмулација, алтернацијска хеуристика, метод промјенљивих околина
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Chapter 1

Introduction

The chief forms of beauty are order and symmetry and
definiteness, which the mathematical sciences demon­
strate in a special degree.

Aristotle,Metaphysics

Optimality can be considered as a fundamental principle that defines the laws of physics,
dominates in the etiology, or which orchestrates our social lives. Therefore, we can freely
say that the optimization, among many other things, is a stepping stone of our civiliza­
tion. The first known attempt to investigate optimality in mathematics is contributed to a
Greek mathematician Euclid of Alexandria (325­265 BC). He was interested in geometry
optimization, like the problems of minimal distance or the greatest area [47]. As might be
expected, for a long period since then, mathematicians have not been aware of any gen­
eral methods for finding optimal solutions. Only some special techniques were at their
disposal. According to many historians of mathematics, a new period for optimization
started in 1636, when Pierre de Fermat proposed in his paper [36] a general approach to
compute local extreme points of a differentiable function by setting its derivative to zero.
This idea lead to the now well–known first–order condition. The third period in opti­
mization started not long ago with the discovery of linear programming (LP) by Leonid
Kantorovich in 1939 [70, 41].

Today, the interest in mathematical optimization is constantly rising among the re­
searches. All corners of our daily lives, economy, and science are intertwined with our
intentions to make the best decisions, i.e., to find the optimal solutions. For example, cut­
ting unnecessary costs or careful resource usage is directly affecting the company’s profit.
Formulating the appropriate mathematical model to represent the problem and designing
an adequate solution approach is of enormous significance in the real–world, not just in
academia.

When it comes to logistics, all its activities and fields require optimization, taking into
account their specific features determined by the goals, resources, infrastructure, available
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strategies, market situation analysis, etc. This is the reason why even in the logistics each
optimization problem is addressed and approached separately.

However, after obtaining the precise and well–designed mathematical model, the next
step is to choose the appropriate solution approach. Contemporary optimization literature
is very rich when it comes to different algorithms for optimization problems. In other
words, the ground is very solid for designing new algorithms or adjusting the existing
ones to find a high–quality solution in a reasonable amount of time.

The primary goal of this work is to provide more realistic model for a specific net­
work design. The understanding of competition and pricing effects allow us to obtain a
deeper managerial insights, provides basis for further refinements, and finally, enables
more efficient and useful transportation services. In order to make all this, we need to
provide adequate mathematical models, describe its properties, and to come up with a
good solution approach.

Here, we will investigate mutual effect of hub location and pricing decisions in a com­
petitive environment. The focus of research is on the existence of Stackelberg equilibria
and design of solution approach for a newly introduced model.

The remainder of this chapter is structured as follows. Firstly, a small introduction
to hub location problems is given, including the overview of current research trends in
this field. After that, the general story of Stackelberg competition, (r|p) hub–centroid
problem, Bertrand competition, and logit model are presented.

1.1 Hub Location Problem

Following the global growth in trade volumes, a spoke–hub distribution paradigm has
emerged, as a sort of antipode to the point­to­point networks. From a historic perspective,
it seems that the paradigm was firstly used in the telecommunication industry. However,
in logistical systems, the airline industry and postal companies are one of the main users
of this concept. Delta Air Lines, an airline transportation company from the USA, pi­
oneered the use of spoke–hub network model in 1955 [37]. Nevertheless, this system
has become the norm in the airline industry after the Airline Deregulation Act introduced
by the U.S. federal government in 1978 [8]. Simultaneously, the information technology
sector adopted this paradigm under a dub name “star network” [10].

Under the spoke–hub paradigm traffic planners organize routes as series of “spokes”
which connect outlying points, called origin–destination pairs (O–D pairs), through series
of “hubs”. The set of such routes, which forms a connected graph, is denoted as a hub and
spoke network in the operations research literature.

An immediate consequence of using this concept is a flow concentration on hub­to­hub
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Figure 1.1: Point­to­point network of eight nodes. Each edge represents two connections of opposite direc­
tions.

connections, which has several advantages [110]:

• lower network installation costs;

• economies of scale on connections;

• economies of scale at hubs;

• economies of scope in the use of shared transshipment facilities.

For example, an interconnected network with k nodes and no hubs has k(k−1) spokes.
However, selecting one node to serve as a hub, i.e., to connect all other non–hub nodes
with each other, will result in a need for only 2(k − 1) spokes.

In Fig. 1.1, a point­to­point network is presented. It involves 56 direct connections,
depicted with 28 edges in the interest of clarity, where an edge represents two connections
of opposite directions. Each connection requires an infrastructure and vehicle service. On
the other hand, a hub and spoke structure presented in Fig. 1.2, requires only 20 connec­
tions, represented as 10 edges. Two hubs are distinguished with red color, alongside with
the inter–hub connection. The cost reduction is obvious. Furthermore, using larger and
more efficient vehicles on inter–hub connections does not only reduce the transportation
costs per unit of flow but is possibly more friendly for the environment.

However, it is worth noting that some potential disadvantages may also occur such
as additional transshipment because fewer point­to­point services are offered. For some
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Figure 1.2: A hub and spoke network of eight nodes. Each edge represents two connections of opposite
directions. Hubs and inter–hub connections are distinguished with red color.

connections, this may involve delays and potential congestions at hubs. As the demand
and network load grow, more point­to­point services become feasible. Thus, hub and
spoke networks are an intermediate stage in network development because the service
preference remains direct connection.

In the location theory, problems concerned with these kinds of networks are called hub
location problems (HLPs). Due to their high importance in academic and engineering
fields, HLPs are widely studied by researchers [22, 48, 20].

The main goal is to seek out for the optimal locations of hubs and allocations of non–
hub nodes to hubs concerning a given objective. Hubs serve as collection, consolidation,
and dissemination points when routing the flow between O–D pairs. The location part
is concerned with finding the most suitable position to establish a hub in the network
architecture. On the other hand, the allocation subproblem seeks to explore the connection
relationship in the network architecture.

The traditional classification of hub location problems is usually done according to the
following criteria:

• solution domain: discrete or continuous;

• objective: maximization or minimization;

• a decision about the number of hubs: exogenous or endogenous;
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• hub capacity: uncapacitated (unlimited) or capacitated (limited);

• hub location cost: fixed, variable, or no cost at all;

• inter–hub connectivity: total or partial.

• the allocation of a non–hub node to hub nodes: multiple or single;

• the cost of direct connection: fixed, variable, or no cost at all;

• problem type: median, center, covering, etc.;

• other restrictions.

Usually, it is assumed that the hubs are interconnected. Various mathematical models for
hub location problems can be formulated by considering this classification.

In the research literature, the concept of concentrator in a network was firstly ad­
dressed by Goldman in his paper [54], published in 1969. The first HLP was introduced
by O’Kelly in 1987 [103]. It was a so–called single allocation HLP. In 1994, Campbell
has formulated a multiple allocation variant [19]. Soon, many researchers become inter­
ested in HLP. For example, Skorin–Kapov et al. have investigated, in [118], tight linear
programming relaxations of uncapacitated p­hub median problems. Ebery et al., in 2000,
considered and presented formulations and solution approaches for the capacitated multi­
ple allocation hub location problem [44]. Mayer andWagner have provided, in their paper
[92] from 2002, a new and improved branch­and­bound procedure for the uncapacitated
multiple allocation HLP. The interest in HLP is growing every year. A more detailed re­
view of HLPs, their classification, and solution approaches can be found in [22, 48, 5, 82].

1.1.1 Two Classic Hub Location Problems

In the following lines, as an illustration, two classic hub location problems are going to
be presented: p–hub median problem (p–HMLP) and p­hub center problem (p–HCLP).

p–Hub Median Location Problem

The formulation of this problem is similar to the p–median one, hence the name origin.
Because every non–hub node could be allocated to one or more hubs this model is also
named the multiple allocation p–HLP, to build a connection with the (single allocation)
p–HLP of O’Kelly.

Formally, the problem is defined over a complete digraph G = (N,A), where N is
the non–empty set of nodes and A is the set of arcs. A hub can be established only at
some node k ∈ N . The number of hubs p is determined exogenously. There are no
capacity constraints imposed on hubs and there are no costs for locating hubs. Themultiple
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allocation scheme involved in p–HMLP means that each non–hub node i ∈ N can be
allocated to several existing hubs. There are no costs for establishing connections on arcs.
There exists a non–negative transportation cost per unit of flow along the arc (i, k) ∈ A,
denoted as cik ≥ 0. Usually, it is assumed that cik is obtained by a non–decreasing function
of distance. The so–called fundamental approach in modeling the economies of scale is
used by involving several standard assumptions from the hub location theory:

• the resulting hub backbone must be totally interconnected;

• transportation cost factors χ, α and δ for the flow consolidation in the collection
(origin to hub), transfer between hubs, and distribution (hub to destination), are re­
spectively appertain to;

• concatenation of arcs composes a route, in which hubs are located at the joints;

• at most two hubs are allowed to be on a single route, meaning that at most two stops
are permitted.

The ordered quadruple (i, j, k, l) represents the route i→k→l→j. The transportation cost
cij,kl for a route i→k→l→j is computed as cij,kl = χcik + αckl + δclj . A non–negative
demand wij ≥ 0 for every O–D pair (i, j) ∈ A is assumed to be perfectly inelastic (basi­
cally, it is an arc weight in G). The resulting optimal hub and spoke network must cover
all nodes in G.

The non–negative real variable xij,kl represents a fraction of flow going from i to j

through hubs k and l. The binary decision variable yk is taking value 1 if and only if k is
chosen to be a hub, otherwise yk = 0.

The p–HMLP can be represented as the following mixed–integer linear program [19]:

min
∑

i,j,k,l∈N

wijxij,klcij,kl (1.1)

s.t.
∑
k,l∈N

xij,kl = 1, ∀i, j ∈ N, (1.2)

∑
k∈N

yk = p, (1.3)

xij,kl ≤ yk, ∀i, j, k, l ∈ N, (1.4)

xij,kl ≤ yl, ∀i, j, k, l ∈ N, (1.5)

xij,kl ≥ 0, ∀i, j, k, l ∈ N, (1.6)

yk ∈ {0, 1}, ∀k ∈ N. (1.7)

The objective function (1.1) sums the transportation costs for all established routes.
Constraints (1.2) assure that for each O–D pair (i, j) ∈ N every customer is going to be
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serviced. The number of hubs p is stipulated by constraint (1.3). Constraints (1.4) and
(1.5) assure us that flows are routed via hubs. Variables’ domains are given by (1.6) and
(1.7).

Remark 1.1. In a way, an O–D pair in the p–HMLP is analogous to a demand point (node)
in a p–median location problem.

p–Hub Center Location Problem

The p–HCLP was introduced by Campbell in 1994 [19]. The goal is to establish p hubs in
a network, in order to minimize the maximum cost (or distance) between O–D pairs. We
can find this problem in the transportation of decomposable or sensitive goods through a
network, or when the delivery time frame is very tight [64].

In 2000, Kara and Tansel provided a linear formulation of Campbell’s quadratic model
and showed that its corresponding decision problem is NP–complete [74]. One of the
latest and most promising linear formulations of the p–HCLP was provided in 2009 by
Ernst et al. [46].

Formally, the setting for the p–HCLP is the same as for the p–HMLP. Here, we will
provide a classic four–index non–linear mixed–integer formulation:

min max
∑
k,l∈N

wijxij,klcij,kl (1.8)

s.t.
∑
k,l∈N

xij,kl = 1, ∀i, j ∈ N, (1.9)

yk = p, (1.10)

xij,kl ≤ yk, ∀i, j ∈ N, (1.11)

xij,kl ≤ yl, ∀i, j ∈ N, (1.12)

xij,kl > 0, ∀i, j, k, l ∈ N, (1.13)

yk ∈ {0, 1}, ∀k ∈ N, (1.14)

The objective function (1.8) is to minimize the maximal variable cost among established
transportation routes. The constraint (1.9) assure that for each O–D pair (i, j) ∈ N every
customer is going to be serviced. The number of hubs p is indicated with (1.10). Con­
straints (1.11) and (1.12) assure us that flows are routed via hubs. Finally, the constraints
(1.13) and (1.14) define the variables’ domains.

1.1.2 Current Trends in HLP Research

Roughly, current trends in HLP research can be classified into model extensions and so­
lution approach developments. For the first class, the classic HLP models are extended in
order to grasp more reality mainly by:
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• accounting capacities [45, 25];

• considering different flow cost models [76, 96];

• examining partial interconnection between hubs [18, 111, 109];

• considering location with reliability [75, 2];

• taking into the account pricing [86, 28, 29];

• examining competition and collaboration [112, 86, 28];

• considering stochastic and robust variants [9, 117, 29].

Table 1.1: Prominent studies with exact solution approaches for different HLPs.

Year Problem code Solution approach # of
nodes Reference

1994 U­MA­p–HCLP/HCovLP Integer linear programming 25 [19]
1996 U­MA/SA­p–HMLP Linear programming relaxation 25 [118]
2000 U­MA­p–HCLP Mixed–integer linear programming 25 [74]
2001 U­SA­p–HMLP Mixed–integer linear programing 200 [43]
2005 C­SA­p–HLP Integer linear programming 40 [91]
2008 U­MA­HMLP Benders decomposition 200 [34]
2009 U­SA­p–HMLP Integer linear programming 81 [6]
2009 U­SA­p–HMLP Integer linear programming 550 [104]
2011 U­MA­HMLP Enhanced Benders decomposition 500 [24]
2011 C­SA­p­HLP Mixed–integer linear programming 140 [83]
2012 C­SA­p–HMLP Generalized Benders decomposition 100 [35]
2014 U­MA/SA­HLP+R Second–order cone programming 25 [117]
2016 U­MA­HLP+SC Enumeration–based algorithm 25 [117]

2017 U­MA­HLP+CIC Branch and cut with
mixed–dicut inequalities 100 [26]

2017 U­SA­HLP+MAC Branch and bound with
Lagrangian relaxation 75 [121]

2020 U­SA­HLP+R+P Second­order cone programming 25 [29]

When it comes to the second class of HLP research trends, a large variety of algorithms
have been proposed to solve different types of HLPs during the past three decades. Table
1.1 presents some of the prominent studies (and definitely not all) in which the exact
optimization methods have been used. The first column refers to the year of publishing, in
the second one a code name for the addressed problem is presented, the third columns gives
the name of solution approach (it could be many, but some of the most interesting ones are
chosen), the fourth tells us the maximum instance size that was empirically investigated,
and the last column provides a literature reference. The code names are composed using
the following abbreviations in a given order:

• capacity: uncapacitated (U) or capacitated (C);

• non–hub node allocation: multiple allocation (MA) or single allocation (SA);
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• type: (p­)HLP—as a general abbreviation, hub median location problem (HMLP),
hub center location problem (HCLP), hub cover location problem (HCovLP), and
HLP+ for the extended models of HLP.

Among many extensions that were addressed in the scientific literature, Table 1.1 refers
only to a few of them as its purpose is to, basically, illustrate the shift in research trends.
Particularly, extensions concerning robustness (R), Stackelberg competition (SC), cyclic
inter–hub connection (CIC), modular arc costs (MACs), and pricing (P) are referred.

Table 1.2: Prominent studies with heuristic solution approaches for different HLPs.

Year Problem code Solution approach # of
nodes Reference

1986 U­SA­p–HMLP Nearest neighborhood ∞ (plane) [102]
1992 U­MA­p–HMLP Tabu search and GRASP 25 [77]
1996 U­SA­p­HLP Simulated annealing 20 [119]
1999 U­MA­p–HMLP Greedy algorithm 50 [115]
2000 C­MA­p­HLP Shortest paths based heuristic 200 [44]
2002 U­MA­p–HMLP Tabu search and GRASP 50 [78]
2003 U­MA­p–HMLP Tabu search 50 [89]
2005 U­SA­p–HLP Genetic algorithm 200 [123]
2006 C­MA­p–HCovLP Greedy algorithm 400 [15]
2007 U­SA­p–HMLP Genetic algorithm 200 [81]
2008 U­SA­p–HMLP Lagrangian relaxation and local search 81 [126]
2009 U­SA­p­HLP Genetic algorithm 200 [49]
2009 U­MA­p­HCovLP Evolutionary approach 82 [107]
2009 U­SA­p–HCLP Heuristic based on aggregation 1000 [53]
2009 U­SA­p–HCLP Ant colony optimization 1000 [94]
2010 U­SA­p–HMLP General variable neighborhood search 1000 [67]
2012 U­MA­p–HMLP+IM Tabu search 25 [68]
2013 U­SA­HLP Memetic algorithm 400 [90]
2017 U­MA­p–HCLP+R Hybrid metaheuristic algorithm 900 [97]
2017 U­SA­p–HCLP General variable neighborhood search 423 [16]
2018 U­SA­HCovLP+QM Particle swarm optimization 30 [63]
2020 U­SA­HMLP+R+P 2–phase matheuristic 25 [29]

This table is not exhaustive at all. It is dominantly based on [48], where an interested
reader can find references to many important and interesting studies, regarding HLP.

Althoughwe can apply exact algorithms, they are usually used to solve problemswith a
smaller number of nodes. Empirical studies show that lager instances need to be solved by
heuristic procedures. While large–size instances can be somewhat dealt with specialized
exact methods (e.g., Benders decomposition and branch­and­price methods), the devel­
opment of heuristic approaches (specialized ones, metaheuristics, or matheuristics) has
helped many real–world applications, in which optimal or near–optimal solutions can
be found in a very short execution time. Moreover, in the most of HLP studies usually
the (meta)heuristic algorithms were applied for the empirical investigation. Some promi­
nent research papers concerning heuristic solution approaches applied to different HLPs
are presented in Table 1.2. The organization of Table 1.2 is the same as in the previous
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one. Also, extensions like inter–modal logistics (IM), queue estimation model (QM), are
pointed out.

It is worth to note that sometimes even heuristics might not be able to properly address
the large–size cases. For example, the very large–scale systems which demand a large
number of investments. In some cases, even 1% gaps are not tolerable. In other words,
there is a lack of appropriate solution approaches for solving situations of this kind [48].

1.2 Stackelberg Competition

Heinrich von Stackelberg (1905–1946) proposed in his book “Marktform und Gleichg­
wich” [120], published in 1934, a new model of market economy based on the following
assumptions:

• it is more reasonable to expect that companies will enter the market in a sequential
fashion, rather than simultaneously;

• strategic decisions that company makes are usually hard to change and easily ob­
servable;

• it is natural to investigate the possibility of first move advantage in cases of excess
capacities.

Using the Game Theory terms, the players of this 2–stage game are called leader and fol­
lower. The leader moves first by choosing her strategy, knowing ex ante that the follower
observes her decision. After making a move, it can not be revoked, i.e., the leader is un­
der the power of commitment. The follower is not committed to a future non–Stackelberg
leader’s decision and the leader is aware of this. Each player intends to maximize their
respective utility function payoffs. All strategy profiles are the common knowledge. In
other words, the complete and perfect information is assumed.

Remark 1.2. The assumption of perfect information is important, as otherwise the game
could be reduced to Cournot duopoly.

Remark 1.3. In the literature, for the leader and follower, usually pronouns “she” and “he”
are used, respectively.

Let us consider the following strategic game

Γ = ⟨P, S, u⟩, (1.15)

where:

• P = {L, F} represents the set of players in which L stands for the leader and F

stands for the follower;
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• SL and SF are the corresponding non–empty (usually finite) strategy sets of leader
and follower, respectively;

• S = SL × SF represents the set of strategy profiles;

• uL : S → R and uF : S → R are finite utility functions for the leader and follower,
respectively;

• u = (uL, uF ) represents the game utility function.

Remark 1.4. For two functions f : X → Y and g : X → Z the notation (f, g) stands
for the function h : X → Y × Z, characterized by π1(f, g) = f and π2(f, g) = g, where
π1 : Y × Z → Y and π2 : Y × Z → Z denote the projections.

In other words, for every leader’s strategy sL we have the set of follower’s best re­
sponses

BRF (sL) = argmax
sF∈SF

uF (sL, sF ). (1.16)

On the basis of follower’s best response, the solution of Stackelberg competition may be
conceived in the set

S̃ = argmax
(sL,sF ):

sL∈SL, sF∈BRF (sL)

u(sL, sF ). (1.17)

Definition 1.1. Any pure strategic profile in S̃ of game Γ is called the unsafe Stackelberg
equilibrium.

Remark 1.5. The Stackelberg duopoly solutions can be perceived as subgame perfect Nash
equilibria of a 2–stage game.

Unfortunately, the practical achievement of unsafe equilibria is not ensured if the fol­
lower’s utility functions are surjective, i.e., when they can attain the same value for dif­
ferent particular strategies. For example we can have that BRF (sL) = {s1F , s2F} and
uL(sL, s

1
F ) < uL(sL, s

2
F ). Both strategy profiles (sL, s1F ) and (sL, s

2
F ) belong to S̃, but

obviously that the first one is not suitable as a solution for the Stackelberg game. Namely,
in these situations we can say that the game is ill–posed. Therefore, in order to exceed
such confusing and unwanted situation, the notion of a safe Stackelberg equilibrium is
introduced, as in [125].

Firstly, the follower’s behavior needs to be properly defined. For that, we consider two
extreme cases:

(1) the leader has optimistic expectations about follower’s behavior: among all strate­
gies in the best response set, the follower chooses one which is the best for leader
(altruistic/benevolent follower);
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(2) the leader has pessimistic expectations about the follower’s behavior: among all
strategies in the best response set, the follower chooses one which is the worst for
leader (selfish/malicious follower).

In the first case, for every leader’s strategy sL we consider the following subset of fol­
lower’s best responses

BRF (sL) = argmax
sF∈BRF (sL)

uL(sL, sF ). (1.18)

For the second case, instead of argmax function we need to use argmin.

Remark 1.6. The follower’s behavior can be defined for the intermediate cases, too.

Now we can introduce a new solution set

S = argmax
(sL,sF ):

sL∈SL, sF∈BRF (sL)

uL(sL, sF ). (1.19)

Definition 1.2. Any pure strategy profile in S of game Γ is called the (safe) Stackelberg
equilibrium for a benevolent follower.

The safe Stackelberg equilibrium for the malicious follower is defined in a similar way.

Definition 1.3. For each Stackelberg equilibrium the corresponding leader’s strategy is
called the Stackelberg strategy.

Remark 1.7. In a simultaneous game, given in a matrix form, there may not exists a pure
Nash equilibrium, but a Stackelberg strategy always exists.

Remark 1.8. When the sum of utility functions for the leader and follower is a constant,
i.e., uL(sL, sF ) + uF (sL, sF ) = const., for sF ∈ BRF (sL), then the follower’s utility
function is surjective.

Remark 1.9. For the set of best responsesBR, we will denote the particular best response
with lowercase letters br. For example, for a set BRF (sL), the particular best response
can be denoted as brF (sL).

Example 1.1. The market price p depends on total quantityQ produced and it is estimated
by function P (Q), i.e., as

p = P (Q) = a− bQ, (1.20)

where a and b are known coefficients. Denote the leader’s and follower’s production
quantities as qL and qF , respectively. We have that Q = qL + qF .

The production cost function is given as C(q) = cq, and it is the same for both com­
petitors.
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The follower’s profit, once the leader’s quantity qL is known can be computed as

uF (qL, qF ) = (a− b(qL + qF )− c)qF . (1.21)

The first–order condition ∂uF (qL,qF )
∂qF

= 0 yields a − bqL − 2bqF − c = 0, i.e., the best
response of follower is given as

BRF (qL) =
1

2

(
a− c

b
− qL

)
. (1.22)

We can see that his best response function is surjective. In other words, the behavior
of follower does not need additional specification, which means that the set BRF (qL) is
singleton. Because of this, we can write brF (qL) = 1

2

(
a−c
b
− qL

)
.

The leader’s profit is given by

uL(qL, qF ) = (a− b(qL + qF )− c)qL. (1.23)

Substituting the follower’s best response expression in the right hand side of last equation
we obtain a new one–parameter function

ūL(qL) =

(
a− b

(
qL +

1

2

(
a− c

b
− qL

)))
qL − cqL, (1.24)

i.e.,
ūL(qL) =

qL
2
(a− c− bqL) . (1.25)

The first–order condition yields a−bqL− a−c
2
−c = 0, from which we get the Stackelberg

strategy for the leader
q∗L =

a− c

2b
. (1.26)

Finally, substituting the right hand side of last equation with qL in Eq. (1.21) we obtain(
a− c

2b
,
a− c

4b

)
. (1.27)

as the strategy profile which is a safe Stackelberg equilibrium with payoffs
(

(a−c)2

8b
, a−c

4b

)
.

A graphical explanation of this example is given at Fig. 1.3. N

Remark 1.10. The follower could announce a deviation from the equilibrium by choosing
a non–optimal strategy in order to reduce the game to Cournot. Under the assumption of
rationality this is a non–credible threat, because when the leader has chosen her equilib­
rium strategy, any follower deviation would hurt him, too.

Remark 1.11. In our illustrative example, the leader has the first move advantage, but in
general that does not need to be the case.

Remark 1.12. The Stackelberg competition can be viewed as a dynamic variant of Cournot
duopoly. The best response in Cournot duopoly is the same as the follower’s best response
in Stackelberg model.
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Figure 1.3: The depiction of Stackelberg competition fromExample 1.1. M denotes the Stackelberg strategy
payoff. The Stackelberg equilibrium SE is given as the intersection of follower’s best response function and
the Stackelberg strategy (dotted blue line). The Nash equilibrium CE of Cournot duopoly, given as the
intersection of best response lines, is presented for comparison.

Usually, the Stackelberg competition analysis is accompanied with the investigation
of entry deterrence scenario. Particularly, we are interested in determining weather the
leader can deter the follower from entering the market and what is the optimal deterrence
decision. In our illustration above, this means to set brF (qL) = 0, which implies qL = a−c

b
.

In other words, when leader sets it production equal to a−c
b
, it would not be profitable for

the follower to enter the market.
The concept of Stackelberg competition is applied in a number of real–world prob­

lems in the domain of decision science, transportation, engineering, military, etc. Some
prominent areas are the toll setting [72], natural gas imbalance cash–out problem [71],
traffic light optimization [95], synthesis of reactor networks [55, 12], metabolic engineer­
ing [55, 21], attacker–defender Stackelberg games [17], central economic planning [1],
and facility location [79]. In mathematical optimization research literature the Stackel­
berg game is usually represented as a bi–level mathematical program.

1.3 The (r|p) Hub–Centroid Problem

Competition in the location theory has been studied for almost several decades. Neverthe­
less, in the case of hub location problems, the literature is rather scarce. Recently, Mah­
mutogullari and Kara presented in [88] a new competitive hub location problem, called
the (r|p) hub–centroid problem ((r|p)HCP), for which they even provided an exact so­
lution approach. Particularly, they investigated a Stackelberg competition in which two
transportation companies sequentially enter the market by deploying their hub and spoke
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networks in order to maximize their respective market shares.
The basic mathematical setting for the problem is a complete digraph G = (N,A),

where N is the non–empty node–set and A ⊆ N2 is the set of arcs. A hub can only be
established at a node k ∈ H , where H ⊆ N is the subset of nodes that are available
to locate hubs. A hub can be shared, and there are no capacity constraints. All hubs
should be mutually interconnected. The leader and follower intend to open p and r hubs,
respectively. It is assumed that for both competitors the number of hubs to locate is greater
than two, as otherwise the economies of scale are not generated.

Multiple allocations of non–hub nodes to hubs are allowed. For each O–D pair (i, j) ∈
N2, only one route can be established. The concatenation of arcs composes a route, where
hubs are located at the joints. At most two hubs are allowed to be on a single route, i.e.,
at most two stops are permitted.

For every arc (i, j) ∈ A there is a transportation cost per unit of flow cij ≥ 0. The
transportation factor α is already known for the market and it corresponds to the transfer
between hubs. Transportation cost on a route i→k→l→j is given as cij,kl = cik+αckl+clj ,
for all i, j, k, l ∈ N .

Customers prefer the leader or follower concerning provided service levels cij,kl. A
customer prefers the follower’s route if his service level is strictly lower than the leader’s.
Otherwise, it is assumed that the demand is captured by the leader. In the case of equal
service levels, ties are broken in the leader’s advantage, since the customers were already
served by her.

The demand wij ≥ 0 for every O–D pair is taken to be perfectly inelastic. Every
customer must be served by one of the competitors. There are no budget constraints. Both
competitors have a sufficiently large amount of resources to cover all network installation
costs.

The following variables are used to describe the decisions made by the leader:

• Uijk =


1, if a flow from i ∈ N to j ∈ N is routed through k ∈ H as

the first hub

0, otherwise

• Vijm =


1, if a flow from i ∈ N to j ∈ N is routed throughm ∈ H as

the second hub

0, otherwise

• Hk =

1, if the leader locates a hub at node k ∈ H

0, otherwise
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• aij =


1, if a flow from node i ∈ N to node j ∈ N is captured by the

follower

0, otherwise

• βij ≥ 0 is a service level for an O–D pair (i, j) ∈ N2 provided by the leader.

Below are the variables used to represent the follower’s network choice:

• uijk =


1, if a flow from i ∈ N to j ∈ N is routed through k ∈ H as

the first hub

0, otherwise

• vijm =


1, if a flow from i ∈ N to j ∈ N is routed throughm ∈ H as

the second hub

0, otherwise

• hk =

1, if the follower locates a hub at node k ∈ H

0, otherwise

• γij ≥ 0 is a service level for an O–D pair (i, j) ∈ N2 provided by the follower.

If follower chooses S ⊆ H as a hub backbone then the γij is determined as

γij = min
k,m∈S

{cik + αckm + cmj} (1.28)

In order to represent the sequence of variables, we will use a more compact notation:
U = {Uijk}i,j,k∈N , V = {Vijm}i,j,m∈N , H = {Hk}k∈N , a = {aij}i,j∈N , β = {βij}i,j∈N ,
u = {uijk}i,j,k∈N , v = {vijm}i,j,m∈N , h = {hk}k∈N , γ = {γij}i,j∈N . The set of follower’s
solutions for a given leader’s solution, including the computation of service levels γ, is
shortly denoted as F(H,U, V, a, β). The optimal solutions are denoted with asterisk.

The (r|p)HCP can be formulated as a bi–level mixed–integer mathematical program.
For the leader, Mahmutogullari and Kara propose the following model in [88]:

min
∑
i,j∈N

wijaij (1.29)

s.t.
∑
k∈H

Hk = p, (1.30)∑
k∈H

Uijk = 1, ∀i, j ∈ N, (1.31)∑
m∈H

Vijm = 1, ∀i, j ∈ N, (1.32)

Uijk ≤ Hk, ∀i, j ∈ N ∧ ∀k ∈ H (1.33)
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Vijm ≤ Hm, ∀i, j ∈ N ∧ ∀m ∈ H (1.34)

βij ≥
∑
k∈H

Uijk(cik + αckm) + Vijmcmj, ∀i, j ∈ N ∧ ∀m ∈ H (1.35)

βij − γ∗
ij ≤ aijM, ∀i, j ∈ N (1.36)

(h∗, u∗, v∗) ∈ F(H,U, V, a, β) (1.37)

Hk, Uijk, Vijk, aij ∈ {0, 1}, ∀i, j, k ∈ N (1.38)

βij ≥ 0, ∀i, j ∈ N. (1.39)

The leader’s objective (1.29) is to maximize the amount of flow that she can capture,
which is equivalent to the minimization of flow captured by the follower. Constraint
(1.30) ensures that the leader will locate p hubs in H . Requirement that flow from i ∈ N

to j ∈ N will go through at most two hubs k and m, in a given order, is stipulated with
(1.31), (1.32), (1.33), and (1.34). Constraints (1.35) serve to calculate the leader’s service
levels:

• if Vijm = 0, the constraint is redundant;

• otherwise, the right hand side becomes a service level provided by the leader for flow
from i to j.

The flow takeover by follower is determined with (1.36):

• if the left hand side is positive, i.e., the follower provides a service level for the flow
from i to j, better then the leader’s one, the right hand side, for a sufficiently large
M (BigM), must be positive and aij = 1;

• otherwise, the constraint is redundant.

Constraint (1.37) also states that γ∗ is induced from the follower’s model. The respective
domains of variables are specified with (1.38) and (1.39).

Remark 1.13. The constraints (1.35) allow a situation in which multiple routes can be
established for a given O–D pair (i, j), if the service levels are the same. In that case, if
the leader captures the flow for (i, j), we can assume that the demand is being equally
split among established routes.

For the follower’s problem, the following mixed–integer linear program is proposed
in the same paper [88].
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max
∑
i,j∈N
m∈H

wijvijm (1.40)

s.t.
∑
k∈H

hk = r, (1.41)∑
k∈H

uijk = 1, ∀i, j ∈ N (1.42)∑
m∈H

vijm ≤ 1, ∀i, j ∈ N (1.43)

uijk ≤ hk, ∀i, j ∈ N ∧ k ∈ H (1.44)

vijm ≤ hm, ∀i, j ∈ N ∧m ∈ H (1.45)∑
k∈H

uijk(cik + αckm) + cmj − βij + ϵ

≤ (1− vijm)M, ∀i, j ∈ N ∧ ∀m ∈ H (1.46)

hk, uijk, vijk ∈ {0, 1}, ∀i, j ∈ N ∧ ∀k,m ∈ H. (1.47)

The follower’s objective (1.40) is to maximize the amount of flow that he can capture.
Constraint (1.41) ensures that the follower will locate r hubs in H . Allocation of flow to
the first hub is regulated with constraints (1.42). Constraints (1.43) state that flow from
i ∈ N to j ∈ N can be captured by the follower using a hub located at node m ∈ H .
Constraints (1.44) and (1.45) prevent flows going through non–hub nodes. Constraints
(1.46) determine captured flows in the following manner.

The left hand side represents the difference in service level provided by the follower
and service level provided by the leader. To break ties, a sufficiently small positive value
ϵ is added. If the left hand side is non–negative, the corresponding variable vijm is forced
to take 0 value, because the follower cannot provide a better service level than the leader
for a given O–D pair (i, j). Otherwise, there are no restrictions on vijm andM is a large
positive value (Big M). When there are no restriction on vijm, and taking into account the
follower’s objective function, vijm is assigned 1. The variables’ domains are defined by
(1.47).

Remark 1.14. M = (2 + α)maxi,j∈N cij is large enough since the left hand side can not
exceed that value.

Remark 1.15. In this setting, the follower is not obligated to cover all O–D pairs. For
every non–hub node i, there must be an allocation to some hub k ∈ H (because of (1.42)),
which allows the transportation from i to k. However, (1.43) says that the transport in the
opposite direction does not have to be allowed.

Remark 1.16. Although, it is not mentioned in the model, it is assumed that γ∗ in (1.36)
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is computed from the optimal solution of follower’s model using (1.28).

Besides the above model, the paper of Mahmutogullari and Kara [88] provides a few
other interesting results:

• a one–level reformulation of (r|p)HCP based on min–max approach and total enu­
meration of possible follower’s hub backbones;

• a proof that leader’s and follower’s problems are both NP–hard;

• the exact algorithm for solving the (r|p)HCP.

On Fig. 1.4 we can see how (2|2) hub–centroid optimal solution differs from those of
2­hubmedian location and 2­hub center location problems, for a CAB instance from [103],
when α = 0.6. In the interest of clarity, only the (leader’s) hub locations are labeled.

Figure 1.4: Optimal hub locations for (2|2) hub–centroid, 2­hub median, and 2­hub center problems, con­
cerning the CAB instance with α = 0.6.

Besides the afore analysis, we can see that in (r|p)HCP model (1.29)–(1.47) aij =∑
m∈H vijm, for i, j ∈ N . Therefore, we can write the follower’s objective as

max
∑
i,j∈N

wijaij. (1.48)

Furthermore, we note that the leader’s objective can be equivalently transformed into the
maximization one as

−max−
∑
i,j∈N

wijaij. (1.49)
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From here, we see that the sum of leader’s and follower’s function is a constant, i.e., this
is a zero–sum game. Therefore, the follower’s utility function is surjective and there is no
need for defining the auxiliary problem.

Remark 1.17. Mahmutogullari and Kara have not considered in their paper [88] the entry
deterrence scenario.

In 2020, de Araújo et al. published a paper [33] in which they further investigate the
(r|p)HCP. Particularly, their results can be summarized as follows:

• a new one–level reformulation of (r|p)HCP;

• a proof that (r|p)HCP is ΣP
2 –hard;

• an improved exact algorithm for solving the (r|p)HCP.

1.4 Bertrand Competition

It is obvious that besides competing on quantities the companies can compete in pric­
ing. In some cases, this seems more logical, especially in the short run. Taking this into
account, a French mathematician Joseph Louis François Bertrand (1822–1900) investi­
gated and challenged claims of the previously proposed Cournot model. The underlying
assumptions of Bertrand competition are:

• a simultaneous game;

• consumers are indifferent between products/services (homogeneity);

• there are no capacity constraints;

• the strategic choice is on prices, rather than quantities;

• a price–dependent demand function d(p) is known for the market;

• consumers will buy from the firm that offers the lowest price;

• consumers have perfect information;

• the same positive unit cost c > 0 for both players.

The Bertrand competition can be presented as the following infinite game

Γ = ⟨P, S, u⟩ (1.50)

where

• P = {A,B} represents the set of players;

• S = R2+
0 represents the set of strategy profiles;

37



• u : S → R2 represents the game utility function, which in this case corresponds to
the profit pairs.

Strategy sets for both players are the same, i.e., SA = SB = R+
0 . The same hold for the

corresponding utility functions uA = uB, where uA, uB : R2+
0 → R0. In other words,

this simultaneous game is symmetric.

Remark 1.18. This setting requires supply to be perfectly elastic and that the company can
easily increase output in response to the sudden surge in demand.

Let the projected prices for players A and B are pA and pB, respectively. The demand
dA for competitor A is estimated as

dA = D(pA, pB) =


1
2
d(pA), pA = pB

0, pA > pB

d(pA), pA < pB

(1.51)

The demand dB for competitor B is estimated in a similar way.
The profit is computed as a product of demand and price–cost difference, i.e., for player

A we have that profit is equal to dA · (pA − c). Similarly, for player B the profit is equal
to dB · (pB − c).

If playerA decides to sell (provide) products (services) under the price pA then the best
response set of B is given as

BRB(pA) = argmax
pB∈R+

0

uB(pA, pB) (1.52)

= argmax
pB∈R+

0

D(pB, pA)(pB − c) (1.53)

Analyzing all three cases from (1.51) we easily conclude that the best response is

brB(pA) =

c, pA ≤ c

pA − ε, pA > c
(1.54)

where ε > 0 is an arbitrary small positive number, such that pA − ε > c.
For this game, the Nash equilibrium, as a solution concept, is called the Bertrand–Nash

price equilibrium. Recall that in a Nash equilibrium neither of players has incentive do
deviate unilaterally. Therefore, if a strategy profile (p∗A, p∗B) is a Nash equilibrium than
the following holds:

brA(p
∗
B) = p∗A ∧ brB(p

∗
A) = p∗B ∧

brA(brB(p
∗
A)) = p∗A ∧ brB(brA(p

∗
B)) = p∗B.

(1.55)
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Consider the last equality in (1.55). We have that

p∗B =

c, brA(p
∗
B) ≤ c

brA(p
∗
B)− ε, brA(p

∗
B) > c.

(1.56)

which gives us two main cases:

(1) p∗B = c;

(2) p∗B = brA(p
∗
B).

The first case requires that brA(p∗B) ≤ c. From the first equality in Eq. (1.55) we obtain the
condition p∗A ≤ c. Taking into account Eq. (1.54) and analyzing both options we realize
that p∗B must be equal to c. Symmetry gives us that p∗A must equal to c, too. Therefore, a
strategy profile (c, c) is one Nash equilibrium.

The second case requires that also brA(p
∗
B) ≥ c. From the first equality in Eq. (1.55)

we obtain the condition p∗A ≥ c and p∗B = p∗A−ε. In other words, we have strict inequality
p∗B < p∗A (because c > 0). Symmetry gives us that p∗A < p∗B, which results in contradic­
tion. Therefore, the only Nash equilibrium is the perfect competition (c, c). A graphical
explanation is presented at Fig. 1.5.

Figure 1.5: Graphical explanation of Bertrand–Nash price equilibrium (BNPE).

Remark 1.19. This equilibrium does not hold with asymmetric cost functions since the
company with the lowest marginal costs would seize the entire market and become a mo­
nopolist.
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Remark 1.20. In the literature, every simultaneous price game is usually called Bertrand’s
competition (in a broader sense).

The solution of this game, called the Bertrand–Nash price equilibrium, is a bit para­
doxical (also known as the Bertrand’s paradox). We have that in the case of imperfect
competition, where there is a strong incentive to collude, the situation ends up with the
same outcome as in perfect competition.

1.5 Logit Model

In econometrics, the discrete choice models (DCMs) are used to make predictions about
the choice probabilities between two or more alternatives. Examples are entering or not
entering the labor market, choosing between modes of transport, or choosing between
transportation routes. The DCMs are in contrast with standard consumption models in
which the optimal demand is determined. Loosely speaking, instead of asking “how
much”, DCM analysis asks “which one”. The first applications of DCMs were in trans­
portation planning.

Following the work of Domencich and McFadden [40], it is common to characterize
the choice process by four elements: a decision–maker, the choice set, the attributes of
alternatives, and a decision rule.

A decision–maker (DM) can be represented by any natural person (e.g., airline passen­
ger) or a juridical one (e.g., a government agency).

All feasible alternatives define a finite set called universal choice set C. However,
DM may select from a subset of C, defined as choice set CDM . For example, the C can
represent all routes that connect all pairs of cities in a market. On the other hand, the
choice set of individual traveling from a city i to a city j, denoted as Cij would contain
only routes connecting i with j. The proper choice set must be collectively exhaustive,
mutually exclusive, and finite. The set of available routes connecting cities i and j is
finite and mutually exclusive. However, when it comes to collective exhaustiveness, this
situation requires a perfectly inelastic demand, i.e., the passenger must take one of the
proposed flight routes. Otherwise, the alternative “declining to travel” should be included
to make the choice set exhaustive.

Attributes are characteristics of alternatives that DMs consider during the choice pro­
cess. They can represent both deterministic and stochastic quantities. Examples in airline
industry are average fare (price), schedule quality, connection time, aircraft type, etc.
In reality, we cannot know all factors that affect the individual choice decisions as their
determinants are partially observed or imperfectly measured. Therefore, DCMs rely on
stochastic assumptions and specifications to account for unobserved factors.
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When it comes to decision rules, it is assumed that they are based on rational behavior,
which usually refers to a consistent and transitive preferences of DM. Consistent prefer­
ences mean that a DM will consistently choose the same alternative if it is presented with
two identical choice situations. Transitive preferences refer to the fact that if alternative
A is preferred to alternative B and alternative B is preferred to alternative C, then alterna­
tive A is preferred to alternative C. According to [52], the decision rules are grouped into
categories: dominance, satisfaction, lexicographic, and utility. In practice, only the last
category is considered, because the first three have some limitations: either the resulting
choice is not unique or they do not capture how individuals make trade–offs among at­
tributes. The motivation for using maximum utility theory as a decision rule is to represent
how individuals make trade–offs among attributes

Utility Uni represents a net benefit value of DM n when choosing an alternative i. It is
assumed that DM aims tomaximize the utilityUni, i.e., i is chosen if and only ifUni ≥ Unj ,
for all j ̸= i. The internal structure of utility estimation is assumed to be decomposable
in linear fashion as

Uni = Vni + εni, (1.57)

where Vni and εni represent observed and unobserved components, respectively. For the
first component we have that Vni = Θxni, where

• xni is a vector of observed variables relating to alternative i for DM n that depends
on attributes of the alternative or DM (e.g., price, flight duration, gender);

• Θ is a corresponding coefficient vector for the observed attributes (i.e., variables).

The component εni captures the impact of all unobserved factors that affect the DM’s
choice. It may be influenced by many factors, including measurement errors, omitting
attributes that are important to choice process, or incorrectly specifying the functional
form of attributes. DCM relies on statistical tests to identify violations in assumptions
related to error distributions [124]. The probability that DM selects the alternative i ∈ Cni

is given as:

Pni = P (Uni ≥ Unj (∀j ̸= i)) (1.58)

= P (Vni + εni ≥ Vnj + εnj (∀j ̸= i)) (1.59)

= P (εnj ≤ Vni − Vnj + εni (∀j ̸= i)). (1.60)

The probability that εnj is less than Vni−Vnj + εni is obtained from the cumulative distri­
bution function (CDF), i.e., by integrating over the joint probability distribution function
(PDF) of error terms f(ε)

Pni =

∫ +∞

εi=−∞
. . .

∫ Vi−Vj+εi

εj=−∞
f(ε)dε|Cn| . . . , dεi+1dεi. (1.61)
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Because CDF is continuous, the case when utility of two alternatives is identical, Uni =

Unj , is irrelevant to the derivation of choice probabilities.
Specific choice probabilities for different DCMs are obtained by imposing various as­

sumptions on the distribution of these error terms. The assumption that unobserved error
components ε are independently and identically distributed (iid) and follow a Gumbel
distribution leads to the binary logit in case of two alternatives, or the multinomial logit
in case of more than two alternatives [93].

1.5.1 Some Properties of Gumbel Distribution

For many DCMs it is assumed that error terms follow the Gumbel distribution, including
those which are the most often used for real–life scenarios. CDF and PDF of Gumbel
distribution are given respectively as

F (ε;µ,Θ) = e−e−Θ(ε−µ)

, Θ > 0, (1.62)

f(ε;µ,Θ) = Θe−Θ(ε−µ)e−e−Θ(ε−µ)

, (1.63)

where η and 1
Θ
are the mode and scale, respectively.

The Gumbel, albeit very similar to the Gaussian distribution, is not symmetric. It is
skewed to the right, i.e., its mean is larger than its mode. The mean is equal to µ + γ

Θ
,

where γ is the Euler–Mascheroni constant. The median is µ − 1
Θ
ln(ln 2) and variance

is π2

6Θ2 . On Fig. 1.6 and 1.7 we can see how Gumbel and Gaussian distributions differ,
having their mean and variance being the same.

Figure 1.6: The plots of PDFs for normal andGumbel distributions. The correspondingmeans and variances
are the same.

Let us assume that ε ∼ G(µ,Θ) and x and Ω are positive constants. We have that
ε+ x ∼ G(µ+ x,Θ) and Ωε ∼ G(Ωµ,Θ/Ω). In other words, every Gumbel distribution
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Figure 1.7: The plots of CDFs for Gaussian and Gumbel distributions. The corresponding means and
variances are the same.

can be derived from the unit Gumbel distribution by applying the scale and translation.
Fig. 1.8 depicts the application of these operations on unit Gumbel distribution.

Figure 1.8: Translation (orange) and scale (green) of Gumbel G(0, 1) (blue) distribution.

Under the assumption ε1 ∼ G(µ1,Θ) and ε2 ∼ G(µ2,Θ), ε̄ = ε2 − ε1 is logistically
distributed with CDF and PDF

F (ε̄) =
1

1 + eΘ(µ2−µ1−ε̄)
; (1.64)

f(ε̄) =
ΘeΘ(µ2−µ1−ε̄)

1 + eΘ(µ2−µ1−ε̄)
, Θ > 0; (1.65)

where µ is the mode and 1
Θ
is the scale. The logistic distribution is symmetric, i.e., the

mean is equal to mode µ2 − µ1. The variance of logistic distribution is π2

3Θ2 .
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1.5.2 Choice Probabilities of Logit Model

The multinomial logit model is used to describe how an individual chooses among two or
more discrete alternatives. The probabilities are derived from the assumption that error
terms are iid Gumbel G(0, 1). For that we use the following notation:

• n is DM index;

• Cn is the set of all alternatives for n;

• Vi is the deterministic utility for the ith alternative;

• Ui is the total utility for the ith alternative;

• εi is the error associated with the ith alternative.

We have that

Pni = P (εj < Vi − Vj + εi (∀j ̸= i)) (1.66)

(Treating εi as a conditional variable.)

=

∫ ∞

−∞
Πj∈Cn

j ̸=i
P (εj < Vi − Vj + εi|εi)f(εi)dεi (1.67)

=

∫ ∞

−∞
f(εi)Πj∈Cn

j ̸=i
F (Vi − Vj + εi)dεi (1.68)

(Assuming εi
iid∼ G(0, 1).)

=

∫ ∞

−∞
e−εie−e−εiΠj∈Cn,j ̸=ie

−e−(Vi−Vj+εi)

dεi (1.69)

(Since, e−e−εi = e−e−(Vi−Vi+εi) .)

=

∫ ∞

−∞
e−εiΠj∈Cne

−e−(Vi−Vj+εi)

dεi (1.70)

=

∫ ∞

−∞
e−εie−(

∑
j∈Cn

e−(Vi−Vj+εi))dεi (1.71)

=

∫ ∞

−∞
e−εie−(e

−εi
∑

j∈Cn
e−(Vi−Vj))dεi (1.72)

In the interest of clarity we can introduce a new variable t, such that t = −e−εi , dt =

e−εidεi, and t ∈ (−∞, 0). Therefore, we have that

Pni =

∫ 0

−∞
e(t

∑
j∈Cn

e−(Vi−Vj))dt (1.73)

=
e(t

∑
j∈Cn

e−(Vi−Vj))∑
j∈Cn

e−(Vi−Vj)

∣∣∣∣∣
0

−∞

(1.74)

=
1∑

j∈Cn
e−(Vi−Vj)

(1.75)
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=
1

e−Vi
∑

j∈Cn
eVj

(1.76)

=
eVi∑

j∈Cn
eVj

. (1.77)

From here, taking that |Cn|= 2 we obtain the binary logit model probability choices

Pni =
1

1 + e−(Vni−Vnj)
. (1.78)

There is an underlying sigmoid relationship between observed utility and choice prob­
abilities. The relationship between service improvements and existing market position is
a subtle point, yet one that is important to consider when making large infrastructure or
service improvements [52]. Fundamental properties of the multinomial logit model are:

• only differences in utility are uniquely identified;

• adding a constant to utilities does not affect which alternative has the maximum util­
ity and does not change choice probabilities;

• multiplying utilities by a constant does not affect which alternative has the maximum
utility;

• multiplying utilities by a constant changes the relationship between observed utility
and choice probabilities, as they are influenced by the variance;

• the independence of irrelevant alternatives, which states that the ratio of choice prob­
abilities between any two alternatives is independent of the availability or attributes
of other alternatives.

Remark 1.21. Because only differences in utility are uniquely identified, variables that
do not vary over the choice set have to be included in the utility function by interacting
with generic ones or by specifying them as alternative–specific. Moreover, this property
requires that the location parameter associated with the Gumbel distribution should be
normalized to a constant.

1.6 Outline of Dissertation

In Chapter 2, the newly introduced (r|p) hub–centroid problem under the price war is
presented. We propose a bi–level mathematical model and investigate its properties. The
theoretical examination of proposed model leads to statements about solution existence,
computational complexity, and optimal routes. At the end, linear reformulations of the
follower’s model are presented.
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The theoretical investigation from Chapter 2 provides a foundation for a solution ap­
proach design, presented in Chapter 3. Because we proved that the (r|p) hub–centroid
problem under the price war is NP–hard, the heuristics seem to be natural choice to solve
the corresponding bi–level model. Besides that, we show how commercial state­of­the­art
solver, Gurobi Optimizer, can be used to solve the lower level model exactly. Having this
tool at our disposal, we use it in our algorithms design, based on alternating heuristic and
variable neighborhood search.

Chapter 4 presents computational experiments done on the CAB instances, using the
algorithms designed in the previous chapter. Results of this empirical investigation help
us to examine the stability of solution approach, difference in quality between proposed
algorithms, the effect of different parameters, similarities of the resulting hub backbones,
and the effect of auxiliary model. Managerial insights are based on the observed patterns
in the aforementioned investigation.

Finally, Chapter 5 presents a concluding overview of this research, indicating some
directions for the future work.
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Chapter 2

The (r|p) Hub–Centroid Problem under
the Price War

The mathematician may be compared to a designer
of garments, who is utterly oblivious of the creatures
whom his garments may fit. To be sure, his art origi­
nated in the necessity for clothing such creatures, but
this was long ago; to this day a shape will occasionally
appear which will fit into the garment as if the garment
had been made for it. Then there is no end of surprise
and delight.

Tobias Dantzig

Lüer­Villagra and Marianov [86] have argued that the location or route opening decisions
could be heavily dependent on the revenues that a company can obtain, while the revenues
depend on the price structure. In their paper, they investigate the hub location and pricing
from the follower’s point of view. O’Kelly et al. [105] focused on a (non–competitive)
hub location problem with the price–sensitive demands, deploying an improved Benders
decomposition algorithm. Čvokić and Stanimirovic [29] introduced deterministic and ro­
bust variants of (non–competitive) single allocation hub location and pricing problem, in
which the demand is the price–dependent. As a solution approach for the robust coun­
terpart, besides conic–quadratic mixed–integer reformulation, a 2–phase matheuristic is
proposed. However, in all these studies, the response of competition was not considered.

Sasaki and Fukushima have analyzed in [114] a continuous Stackelberg competition in
which the incumbent competes with several entrants for profit maximization. For every
route, only one hub was allowed. Afterward, Sasaki investigated the hub network design
model in a competitive environment with a flow threshold [112]. Čvokić et al. introduced
in their paper [27] a leader–follower hub location problem under fixed markups, deploy­
ing an alternating heuristic as a solution approach. As we already said, Mahmutogullari
and Kara addressed an (r|p) hub–centroid problem in which the goal is a market share
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maximization, designing an exact algorithm [88]. In their paper, the demand is divided
among the competitors by the “the winner takes it all” rule: a competitor with lower route
costs gets the whole demand. Recently, Čvokić et al. introduced the (r|p) hub–centroid
problem under the price war [28]. Here, we present this new problem.

Two competing transportation companies intend to enter the market. They are aware
of each other. Both of them aspire to maximize their profits by finding the best hub and
spoke networks and corresponding price structures. The management of one company
wants to establish p hubs, and the other one has a plan to locate r hub–facilities. After
setting their networks, it is expected that the competing companies will engage in the price
war, which assumes responding to the current opponent’s pricing with a more competitive
one. The solution of price war, if it exists, is a Bertrand–Nash price equilibrium, in which
none of the competitors has an incentive to change their price decisions unilaterally.

Usually, two scenarios are considered in the literature: simultaneous and sequential en­
trance to the market. In the first scenario, the price war is a natural assumption. The issue
is that we could expect multiple Nash equilibria to exist when it comes to the competitors’
hub and spoke topologies. Finding payoff–dominant equilibrium could be a daunting task.
Moreover, the payoff–dominant equilibrium does not need to be composed of pure strate­
gies, i.e., it can be characterized by the cycle of best responses. The standard interpretation
of Nash equilibrium composed of mixed–strategies is not admissible. The company will
not “flip a coin” to choose a network topology. In the second scenario, the price war is not
assumed, i.e., the first competitor that enters the market is committed to its location and
price decisions. Nevertheless, a finite Stackelberg price solution implies the existence of
a feasible Bertrand–Nash price equilibrium, which opens the door to a cooperative price
game with transferable utilities.

Taking all this into account, we may be interested in considering an intermediate vari­
ant, i.e., a Stackelberg competition under the price war. One company, the leader, enters
the market as the first competitor, anticipating the entrance of the other company, the fol­
lower. The prices are set according to the solution of price war. This setting implies that
the leader cannot impose prices on the follower, i.e., the pricing is mainly a result of the
follower’s entrance to the market. We could say that this scenario is equivalent to the
search for the Stackelberg strategy if the game is simultaneous, and it may also be related
to the search for a price status quo point when cooperative pricing is considered.

When it comes to our problem’s name, the term “centroid” is taken loosely, i.e., in
a more general sense, because this competition does not need to be a zero–sum game.
Nevertheless, in this competition, the leader is under a direct attack from the follower. She
must take the follower’s moves into account and find the best position so that possible
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harm is minimized while maximizing the profit. The variant of our problem in which
the leader is focused on minimizing the follower’s profit does not make sense from the
economic viewpoint. After all, we can look at using the term “centroid” similarly to how
the semantics of term “center” was extended from geometry to the location theory. Of
course, we should always leave some space for possibly better naming of this and similar
problems.

2.1 Mathematical Formulation

The underlying mathematical setting for the problem is a complete digraph G = (N,A),
where N is the non–empty node–set and A ⊆ N2 is the set of arcs. A hub can only be
established at some node k ∈ N . Also, hubs can be shared, and there are no corresponding
capacity constraints. All hubs should be mutually interconnected. Establishing a hub is
considered as a strategic decision.

For every arc (i, j) ∈ A there is a transportation cost per unit of flow cij ≥ 0. For each
O–D pair (i, j) ∈ N2, only one route can be established. Multiple allocations of non–hub
nodes to hubs are allowed. The transportation factors χ, α and δ are already known for
the market and they correspond to flow consolidation in collection (origin to hub), transfer
between hubs, and distribution (hub to destination), respectively. Concatenation of arcs
composes a route, where hubs are located at the joints. At most two hubs are allowed to
be on a single route, i.e., at most two stops are permitted. Transportation cost on a route
i→k→l→j is given as cij,kl = χcik + αckl + δclj , for all i, j, k, l ∈ N .

It is assumed that the customers choose routes according to observed prices. Both
competitors are using the mill pricing, i.e., the customers are paying their expenses. The
logit model is used to resolve the issue with a discrete choice. As we know, it is essentially
a rule that determines howmuch of the flow is going to be captured by a competitor. There
is a sensitivity parameter Θ ≥ 0 with an already known non–negative value assigned. A
higher Θ means that customers are susceptible to price differences, so they will mostly
choose less expensive routes. On the other hand, a smaller Θ means that the customers
are less sensitive to price differences.

The demand wij ≥ 0 for every O–D pair is taken to be perfectly inelastic. Every cus­
tomer must be served by one of the competitors. There are no budget constraints. Both
competitors have a sufficiently large amount of resources to cover all network installation
costs. Imposing such constraint when the demand is inelastic, and competitors are aiming
to maximize their profits does not make much sense. An insufficient budget could lead
to a degenerate solution in which the competitors are utilizing the nature of an inelas­
tic demand by setting arbitrary high prices on some O–D pairs, which would make the
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problem trivial and not very interesting. One of the nice features of solution should be
that we can compare the leader’s and follower’s profits. Moreover, the inelastic demand,
combined with the competitive setting and high network installation costs, can produce
similar problems, even without budget constraints.

Therefore, following the work presented in [113, 112], the study considers only settings
where both players are forced to serve all nodes. This approach can also be justified by
stating that lots of features, such as representations of economies of scale, are still crude
approximations of actual dynamics in a hub and spoke topology, as recently observed by
[20]. It should be noted that degenerate solutions are not possible if the demand function
is downward–sloping.

The following variables are used to describe the choices made by the leader and fol­
lower:

• xk = 1 if the leader has established a hub at node k ∈ N , and 0 otherwise;

• ρij,kl = 1 if the leader has established a transportation route i→k→l→j from i to j,
and 0 otherwise;

• tij,kl is the price charged by the leader on a route i→k→l→j;

• yk = 1 if the follower has established a hub at node k ∈ N , and 0 otherwise;

• ςij,kl = 1 if the follower has established a transportation route i→k→l→j from i to
j, and 0 otherwise;

• qij,kl is the price charged by the follower on a route i→k→l→j.

In order to represent the sequence of variables, we will use a more compact notation:
c = (cij,kl)i,j,k,l∈N , x = (xk)k∈N , ρ = (ρij,kl)i,j,k,l∈N , t = (tij,kl)i,j,k,l∈N , y = (yk)k∈N ,
ς = (ςij,kl)i,j,kl∈N , and q = (qij,kl)i,j,k,l∈N . The follower’s solutions for a given leader’s
solution are shortly denoted asF(x, ρ). The optimal solutions are denotedwith an asterisk.

Bitran and Ferrer in [13] provided the closed form expression for the optimal response
price q over a cost c, when the opponent’s price t is known

q∗ = c+
1

Θ

(
1 +W0

(
e−Θ(c−t)−1

))
. (2.1)

W0 is the principal branch of the LambertW function. Lüer–Villagra and Marianov have
generalized this expression in their study [86] by considering HLP with multiple routes of
the same O–D pair. This motivates us to introduce the function to represent the optimal
price response. Following the result in [86], this new function λij,kl : N × R4|N |4

+ −→ R
is defined as

λij,kl(N, c, ρ, t, ς) = cij,kl +
1

Θ

(
1 +W0

(∑
u,v∈N e−Θcij,uv−1ςij,uv∑
u,v∈N e−Θtij,uvρij,uv

))
. (2.2)
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The (r|p)HCPuPW can be represented as a bi–level mixed–integer non–linear mathe­
matical program. For the leader, we propose the following model:

max
∑

i,j,k,l∈N

wij(t
∗
ij,kl − cij,kl)

ρij,kle
−Θt∗ij,kl∑

u,v∈N ρij,uve
−Θt∗ij,uv +

∑
u,v∈N ς∗ij,uve

−Θq∗ij,uv
(2.3)

s.t.
∑
k∈N

ρij,kl ≤ xl, ∀i, j, l ∈ N, (2.4)∑
l∈N

ρij,kl ≤ xk, ∀i, j, k ∈ N, (2.5)∑
k,l∈N

ρij,kl = 1, ∀i, j ∈ N, (2.6)

∑
k∈N

xk = p, (2.7)

(t∗, q∗, y∗, ς∗) ∈ F∗(x, ρ), (2.8)

xk, ρij,kl ∈ {0, 1}, ∀i, j, k, l ∈ N. (2.9)

The leader’s profit (2.3) is calculated as a sum of all net incomes. Constraints (2.4) and
(2.5) require that the nodes can be allocated solely to hubs. (2.6) stipulates that only one
route can be established per O–D pair. The number of hubs to locate is exogenous and
specified with Eq. (2.7). Constraint (2.8) denotes that for a given leader’s solution only
optimal follower’s solutions are considered. The domain of decision variables is stated in
(2.9).

Recalling the terminology for the bi–level problems, we present two definitions con­
cerning solutions.

Definition 2.1. A solution ((x, ρ), (t, q, y, ς)) is semi–feasible if (x, ρ) satisfies (2.4)–(2.7)
and (2.9) and (t, q, y, ς) ∈ F(x, ρ).

In other words, in the semi–feasible solutions the optimality is not required for the fol­
lower’s solution.

Definition 2.2. Asolution ((x, ρ), (t, q, y, ς)) is feasible, if it semi–feasible and (t, q, y, ς) ∈
F∗(x, ρ), i.e., the follower’s solution is optimal.

For the deeper understanding of terminology the reader is referred to the book of Dempe
[38].

When it comes to the follower’s problem, we propose the following bi–objective
mixed–integer non–linear program, for which the preferred solutions are obtained by an
a priori lexicographic method. It is assumed that the follower’s behavior is benevolent,
i.e., the leader has optimistic expectations concerning the follower’s attitude.
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max
∑

i,j,k,l∈N

wij(qij,kl − cij,kl)
ςij,kle

−Θqij,kl∑
u,v∈N ρij,uve−Θtij,uv +

∑
u,v∈N ςij,uve−Θqij,uv

(2.10)

max
∑

i,j,k,l∈N

wij(tij,kl − cij,kl)
ρij,kle

−Θtij,kl∑
u,v∈N ρij,uve−Θtij,uv +

∑
u,v∈N ςij,uve−Θqij,uv

(2.11)

s.t.
∑
k∈N

ςij,kl ≤ yl, ∀i, j, l ∈ N, (2.12)∑
l∈N

ςij,kl ≤ yk, ∀i, j, k ∈ N, (2.13)∑
k,l∈N

ςij,kl = 1, ∀i, j ∈ N, (2.14)

∑
k∈N

yk = r, (2.15)

tij,kl = λij,kl(N, c, ς, q, ρ), ∀i, j, k, l ∈ N, (2.16)

qij,kl = λij,kl(N, c, ρ, (λij,uv(N, c, ς, q, ρ))i,j,u,v∈N , ς), ∀i, j, k, l ∈ N, (2.17)

tij,kl, qij,kl ≥ 0, ∀i, j, k, l ∈ N, (2.18)

yk, ςij,kl ∈ {0, 1}, ∀i, j, k, l ∈ N. (2.19)

The follower’s profit (2.10) is calculated as a sum of all net incomes. The behavior
of follower as a benevolent and altruistic competitor is defined by (2.11). The constraints
(2.12) and (2.13) require that the nodes can be allocated solely to hubs. (2.14) stipulate
that only one route can be established per O–D pair. The number of hubs to locate is
exogenous and specified with Eq. (2.15). The follower is setting the equilibrium prices
(2.16)–(2.17), i.e., he does not have an incentive to change his own price decision. It
should be noted that in the price equilibrium, the leader also does not have an incentive
to change her price decision. The domains of price and network variables are stated in
(2.18)–(2.19).

The main reason behind the bi–objective formulation of follower’s model is that we
can not claim that our problem is a zero–sum game. The sum of the leader’s objective
function with the first follower’s one does not yield a constant. Ignoring this fact could
lead to an ill–posed model.

The lower level model, regarding the first objective solely, is concerned with finding
a medianoid affected by the price war, for which the leader’s set of hubsHp is fixed. It is
called the (r|Hp) hub–medianoid problem under the price war ((r|Hp)HMPuPW).

The follower’s behavior says that he is impelled to increase the leader’s wellbeing (the
second objective of lower–level model). Simultaneously, he constrains himself from con­
sidering hub and spoke networks which will generate him a suboptimal profit. In the lit­
erature, this problem is called the (follower’s) auxiliary problem, while the corresponding
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model is accordingly named as the (follower’s) auxiliary model (AM) (please, see [4, 38]).
We note that a priori lexicographic method in bi–objective formulation implicitly assumes
that the following constraint must be satisfied when solving AM

∑
i,j,k,l∈N

wij(qij,kl − cij,kl)ςij,kle
−Θqij,kl∑

u,v∈N ρij,uve−Θtij,uv +
∑

u,v∈N ςij,uve−Θqij,uv
≥ F ∗, (2.20)

where F ∗ represents the optimal value of the prior (r|Hp)HMPuPW. In other words,
(r|Hp)HMPuPW can have more than one optimizer and among all of them we are search­
ing for the one which is the best for leader (benevolent behavior).

Remark 2.1. Changing the second objective frommaximization tominimizationwe obtain
a model which defines the malicious behavior of follower. In this case, the leader has
pessimistic expectations concerning the follower’s attitude.

Remark 2.2. If the Bertrand–Nash price equilibrium exists, then the equilibrium equation
holds for the leader’s prices, too. In other words,

tij,kl = λij,kl(N, c, ς∗, (λij,uv(N, c, ρ, t, ς∗))i,j,u,v∈N , ρ). (2.21)

In the following section we address the problem of Bertrand–Nash price equilibrium
existence.

2.2 Existence of Bertrand–Nash Price Equilibrium

If a finite Bertrand–Nash price equilibrium does not exist, then obviously the set of fea­
sible solutions is empty for both competitors. Then again, there may exist multiple price
equilibria. The following theorem resolves this issue.

Theorem 2.3 (Čvokić, Kochetov, Plyasunov, Savić in [28]). In (r|p)HCPuPW, for a given
leader’s and follower’s networks, there exists a unique finite Bertrand–Nash price equi­
librium.

Proof. The objective functions (concerning profit) for both competitors are separable by
O–D pairs. Taking into account that the networks are already given, we knowwhich routes
are established. Thus, we can focus on a particular O–D pair in our analysis and neglect
the indexes entirely. Because each competitor can establish only one route per O–D pair,
the best response price constraints are reduced to (2.1).

The derived closed form expression for the best response in terms of margins for the
competitors are given as follows:

• the leader’s best response margin rL(rF ) =
1
Θ

(
1 +W0

(
QeΘrF−1

))
• the follower’s best response margin rF (rL) =

1
Θ

(
1 +W0

(
eΘrL−1

Q

))
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where Q = e−ΘcL

e−ΘcF
. The margins of best responses are bijective functions (continuous,

monotone increasing) from a domain of non–negative real numbers, to corresponding co–
domains, and vice versa for the inverses. We need to prove that the finite stable point, i.e.,
a Bertrand–Nash price equilibrium, always exists. In other words, we need to solve the
following equation

r∗L = rL(r
∗
F ) = rL(rF (r

∗
L)), (2.22)

which is reduced to the system

τ = W0

(
QeW0( eτ

Q )
)

(2.23)

r∗L =
τ + 1

Θ
(2.24)

Algebra can also be done for the other player, in the same fashion. The principal branch
of LambertW function can be represented by an infinitely nested logarithm asW0(x) =

ln
(

x
W0(x)

)
. Using this, we can transform Eq. (2.23) intoW0

(
QeW0( eτ

Q )
)
eτ = QeW0( eτ

Q ).

After multiplication of both sides byW0

(
eτ

Q

)
and simplifying the equation, we obtain the

next system of equations with their corresponding constraints

W0

(
Qeξ

)
=

1

ξ
∧ ξ > 0 (2.25)

ξ = W0

(
eτ

Q

)
(2.26)

r∗L =
τ + 1

Θ
∧ r∗L ≥ 0 (2.27)

The first equation always has a solution on (0,∞). What remains is to check if
the solution is feasible, i.e., if r∗L ≥ 0. The last two equations result in eτ =

Qξeξ ∧ ξ > 0 ∧ τ ≥ −1 ⇐⇒ ξ ≥ W0

(
1
Qe

)
. Therefore, we need to prove

that W0

(
QeW0((Qe)−1)

)
≤ 1

W0((Qe)−1)
for all Q > 0. To do that, we will analyze a func­

tion f(Q) = W0 ((Qe)−1)W0

(
QeW0((Qe)−1)

)
.

We observe that lim
Q→∞

f(Q) = 0, which can be seen through the series expansion at

x = ∞. Next, W0

(
1
Qe

)
W0

(
QeW0( 1

Qe)
)2

= 0 is representing the first order condition
for f(Q), which does not have a solution on (0,∞). At the end, lim

Q→0+
f(Q) = 1

e
, because

W0((Qe)−1) → ∞ when Q → 0+, and lim
x→∞

xW0

(
a
x

)
= a for some real a, which can

again be seen from the series expansion at x =∞. In our case a = 1
e
. The plot of function

f(Q) is presented in Fig. 2.1.

Remark 2.4. On a plot, the Bertrand–Nash price equilibrium can be represented as an
intersection of the best response curves, as on Fig. 2.2.

The search for the optimal leader’s solution can be based on finding the best feasible
follower’s hub and spoke topology for which the prices are computed by (2.28)–(2.29).
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Figure 2.1: The graph of the function f(Q) when Q ∈ (0,∞). The limit of f(Q) when Q→ 0+ is 1
e , and

the limit when Q→∞ is 0.

Figure 2.2: The Bertrand–Nash price equilibrium for Θ = 3.35 and Q = 0.5, presented as the intersection
of best response curves: the leader’s (blue) and the follower’s (red). Doted line represents the follower’s
best response in the same coordinate system as the leader’s one (just for comparison).

Proposition 2.5 (Čvokić, Kochetov, Plyasunov, Savić in [28]). For a given leader’s net­
work in (r|p)HCPuPW, the optimal follower’s Bertrand–Nash equilibrium price q∗ij,kl on
a route i→k→l→j can be computed by
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τij,kl = W0

(
eτij,kl

W0

(
eτij,kl+Θ(cij,kl−cij,uv)

)) (2.28)

q∗ij,kl = cij,kl +
τij,kl + 1

Θ
(2.29)

where (u, v) is the pair of hubs connecting the route established by the leader for the O–D
pair (i, j).

Proof. The statements follows from the proof of Theorem 2.3, when the networks are
fixed and equations are derived from the follower’s point of view. To obtain Eq. (2.28)
from Eq. (2.23) we exploit the identity eW0(x) = x

W0(x)
.

Remark 2.6. Although presented from the follower’s viewpoint, the equilibrium price
equations (2.28)–(2.29) can be used to calculate the corresponding leader’s price, too.

Remark 2.7. The new Bertrand­Nash equilibrium follower’s pricing does not take into
account the leader’s price — only the route costs.

Remark 2.8. The logit model and possibly different route costs yield a Bertrand–Nash
price equilibrium that is not a perfect competition.

Remark 2.9. The proof of Theorem 2.3 proposes the starting point for the numerical com­
putation of the corresponding follower’s price

max

{
W0

(
e−Θ(cij,uv−cij,kl)−1

)
,
1

Θ

(
1 +W0

(
e−Θ(cij,uv−cij,kl)−1

))}
. (2.30)

Remark 2.10. The pair (∞,∞) is also an equilibrium, but not a feasible one.

Definition 2.3. The price war sequence {(ti, qi)}∞i=0 is composed from the ordered pairs
in which t0 is some arbitrary finite leader’s price and

• qi = brF (ti) for i ∈ N ∪ {0}, i.e., qi is the follower’s best response to the leader’s
price ti;

• ti = brL(qi−1) for i ∈ N, i.e., ti is the leader’s best response to the follower’s price
qi−1.

The corresponding sequences {ti}∞i=0 and {qi}∞i=0 are called the leader’s and follower’s
induced price war sequences, respectively. The starting price t0 is called the (leader’s)
war starting price.

Corollary 2.11. A price war sequence can be (re)constructed from either the leader’s or
the follower’s induced price war sequence.

Remark 2.12. We can easily take the follower’s viewpoint, i.e., we can construct the price
war sequence from his price, as the best response to the leader’s one. Of course, in this
case we should accordingly adjust the ordering and equalities in the previous definition.
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Definition 2.4. The pair of prices (t, q) is attainable from the leader’s price t0 ∈ [0,∞) if
there exists a price war sequence {(ti, qi)}∞i=0 with t0 as the leader’s war starting price and
n ∈ N such that (t, q) = (tn, qn). Otherwise, we say that this pair of prices is unattainable
(or not attainable) from the leader’s price t0.

Attainable means there is a finite sequence of price moves, starting from t0 and ending
with t, for the leader, and q, for the follower.

Remark 2.13. If q ̸= brF (t) for a price pair (t, q), then (t, q) is not attainable from any
war starting price.

Definition 2.5. If a finite pair of prices (t, q) satisfies that q = brF (t), than we say it is
incidentally attainable from the leader’s price t and t is an incidental leader’s war price
for (t, q).

Remark 2.14. For the sake of clarity, it is worth to mention that in the paper of Nunes and
Boatwright [101], published in Journal ofMarketing Research—an economics journal, the
incidental prices are prices advertised, offered, or paid for unrelated products or goods that
neither sellers nor buyers regard as relevant to the price of an item that they are engaged
in selling or buying.

Remark 2.15. If (t∗, q∗) is a Bertrand–Nash price equilibrium, then the leader’s equilib­
rium price t∗ is incidental.

We can immediately conclude the following.

Corollary 2.16. In (r|p)HCPuPW, the Bertrand–Nash price equilibrium (∞,∞) is
unattainable from any leader’s war starting price.

Similarly to Corollary 2.16, even the finite Bertrand–Nash price equilibrium is not
attainable from any non–incidental leader’s war starting price.

Theorem 2.17. In (r|p)HCPuPW, for a particular O–D pair, the finite Bertrand–Nash
price equilibrium (t∗, q∗), is not attainable from any non–incidental leader’s war starting
price.

Proof. If we assume the opposite, then we have a finite sequence of ordered pairs—a
price war subsequence (t0, q0), (t1, q1), . . . , (tn, qn), for some n ∈ N, where (tn, qn) =

(t∗, q∗), i.e., (tn, qn) is a finite Bertrand–Nash price equilibrium. W.l.o.g. we can focus
our attention to the last two pairs (tn−1, qn−1) and (tn, qn), for which tn−1 ̸= t∗. We know
that brL(qn−1) = t∗. Two cases are possible:

(1) qn−1 = q∗;

(2) qn−1 ̸= q∗.

57



Regarding the first case, we have that q∗ = brF (tn−1) and q∗ = brF (t
∗), which implies

that brF (tn−1) = brF (t
∗). From Eq. (2.1), we know that the best response is a bijective

function. Therefore, tn−1 = t∗, which is a contradiction.
The second case can be reduced to the first one. From the last two pairs, taking

into account that the Bertrand–Nash price equilibrium is a fixed point and applying Re­
mark (2.12), we can construct the price war sequence taking the follower’s viewpoint:
(qn−1, t

∗), (q∗, t∗). Following the same reasoning as in the previous case, we obtain that
qn−1 = q∗ which contradicts the second case premise.

Not being attainable does not mean it can not be a limit of some price war sequence.
However, the finite Bertrand–Nash price equilibrium is feasible and it can be computa­
tionally approximated quite well (e.g., by Halley’s method). Moreover, we will soon see
that it is a limit of every price war sequence. But before proving this, we will present one
small suitable lemma.

Lemma 2.18. For function f(r) =

W0

Qe
W0

(
eΘr−1

Q

)+1

Θ
, when Q > 0 and Θ > 0, there

exists r̄ ≥ 0 such that f(r) is a contraction on a closed bounded interval r ∈ [0, r̄].

Proof. Function f is differentiable and monotone increasing on [0,∞). Its second deriva­
tive is

(2.31)ΘW0

(
eW0(eΘr−1/Q)Q

) e−2W0(eΘr−1/Q)+2Θr−2

Q2
(
W0

(
eΘr−1

Q

)
+ 1
)2 (

W0

(
eW0(eΘr−1/Q)Q

)
+ 1
)3

+
e−W0(eΘr−1/Q)+Θr−1

Q
(
W0

(
eΘr−1

Q

)
+ 1
)3 (

W0

(
eW0(eΘr−1/Q)Q

)
+ 1
)
 .

It is easy to see from this expression that f is convex (concave up) on [0,∞)—the ex­
pression (2.31) is always strictly positive. We already know that f(r) = r has a unique
solution on [0,∞) (the proof of Theorem 2.3), which we will denote as r∗. A simple
illustrative plot of this intersection is given in Fig. 2.3.

These observations tell us that |f ′(x)|< 1. We can apply the Mean Value Theorem on
f over [0, r̄], if r̄ is large enough so that {f(r) : r ∈ [0, r̄]} ⊆ [0, r̄]. It is easy to see that
such r̄ always exists. Particularly, it would be enough for r̄ to take values greater or equal
to r∗. From here we see that our f is Lipschitz with a constant L < 1. In other words, it
is a contraction on a large enough closed bounded interval [0, r̄].

We can now prove a statement about the limit of price war sequence in (r|p)HCPuPW.

Theorem 2.19. In (r|p)HCPuPW, for a particular O–D pair, the corresponding finite
Bertrand–Nash price equilibrium is a limit of every price war sequence.
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Figure 2.3: The function f(r) fromLemma 2.18 (blue) and identitymap (orange), whenΘ = 7 andQ = 0.9.
A point (r∗, r∗) denotes the intersection.

Proof. Take t0 to be a leader’s war starting price. In a way, we want to examine the
relationship between ti and the next leader’s price ti+1, which should be the best response
to the follower’s price qi—the best response to ti (for i ∈ N). Because the corresponding
margins preserve relationships (costs are the same), from Eq. (2.22) we have that

ri+1 =

W0

(
Qe

W0

(
eΘri−1

Q

))
+ 1

Θ
, (2.32)

where ri and ri+1 aremargins corresponding to ti and ti+1, respectively. Here,Q is defined
in the sameway as in Theorem 2.3. Lemma 2.18 and its proof say that the right hand side of
Eq. (2.32) is a contraction on [0, r̄], when r̄ = max{r0, r∗L} and r∗L represents the leader’s
margin in the finite Bertrand–Nash price equilibrium. Now, the statement directly follows
from the application of Banach–Caccioppoli fixed point theorem and Corollary 2.11.

As a consequence of this theorem, we have the following corollary concerning (∞,∞)

case.

Corollary 2.20. In (r|p)HCPuPW, for some particular O–D pair, (∞,∞) is not a limit
of any price war sequence.

2.3 Existence of Stackelberg Equilibria

Using the Theorem 2.3, we obtain the following result about the existence of Stackelberg
equilibrium.

Theorem 2.21 (Čvokić, Kochetov, Plyasunov, Savić in [28]). A safe Stackelberg equilib­
rium exists for (r|p)HCPuPW.
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Proof. The number of possible hub and spoke networks for both players in the market is
finite. For each pair of networks, there exists a unique finite Bertrand–Nash price equi­
librium. Therefore, (r|p) HCPuPW has a finite/feasible optimal solution. When it comes
to the pessimistic leader’s expectations about the follower’s behavior, we can apply the
same reasoning.

Remark 2.22. Having multiple (safe) Stackelberg equilibria is possible and it does not
make the problem ill–posed.

Corollary 2.23. The unsafe Stackelberg equilibrium exists for (r|p)HCPuPW.

Taking into account these results and how demand is dispersed according to the logit
model, we have the following corollary.

Corollary 2.24. For all r > 0, the entry deterrence is not possible in (r|p)HCPuPW.

However, this observation suggest that the deterring of follower can be addressed in a
more sophisticated manner. For example, in the (r|p)HCPuPW setting, the entry deter­
rence is, in its nature, close to the minimization of follower’s profit. This is also interest­
ing from the naming viewpoint, taking into account our observation from the beginning
of chapter.

Additionally, we can provide two more observations.

Theorem 2.25. In (r|p)HCPuP, when Θ→ 0, the profits of both competitors tend to∞.

Proof. From Eq. (2.29) we immediately see that t∗ij,kl → ∞ and q∗ij,kl → ∞ (for all
i, j, k, l ∈ N ). Taking into account constraints (2.6) and (2.14) the limit of market share
term in the leader’s function is

lim
Θ→0

ρij,kle
−Θt∗ij,kl∑

u,v∈N ρij,uve
−Θt∗ij,uv +

∑
u,v∈N ς∗ij,uve

−Θq∗ij,uv

=
ρij,kl∑

u,v∈N ρij,uv +
∑

u,v∈N ζ∗ij,uv

=
ρij,kl
2

If the route ρij,kl is established, the corresponding market share converges to 1
2
. The

similar observation holds for the follower. We know that for every O–D pair at least one
route must be established. Therefore, the statement follows directly.

The next proposition addresses the effect of Θ values from the opposite end of its
domain.

Theorem 2.26. In (r|p)HCPuP, when Θ → ∞, the profits of both competitors converge
to zero.
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Proof. From Eq. (2.29) we immediately see that t∗ij,kl → cij,kl and q∗ij,kl → cij,kl (for all
i, j, k, l ∈ N ). Now, there are two cases: (1) one competitor has established the route of
lower cost and (2) routes of both competitors have the same cost.

In the first case, w.l.o.g., we can assume that the leader has established a lower–cost
route. The limit of the corresponding market share term is

lim
Θ→∞

ρij,kle
−Θt∗ij,kl∑

u,v∈N ρij,uve
−Θt∗ij,uv +

∑
u,v∈N ς∗ij,uve

−Θq∗ij,uv

= lim
Θ→∞

1

1 +
∑

u,v∈N ζ∗ij,uve
−Θ(cij,uv−cij,kl)

= 1 (because cij,uv > cij,kl when ζ∗ij,uv = 1)

When it comes to the second case, taking into account constraints (2.6) and (2.14) it is
easy to see that the limit of market share term for both players is equal to 1

2
. From here,

the statement follows directly in both cases.

Remark 2.27. These two propositions indicate that, in general, the effect of Θ onto the
profit should roughly follow the inverse function.

2.4 Computational Complexity

In this section, we address some questions about the computational complexity of the
leader’s and follower’s problems. We prove that the follower’s problem is NP–hard by
showing a polynomial reduction from the well known NP–complete decision problem for
the r–clique to the standard decision problem of (r|Hp)HMPuPW.

Problem 2.1 (The decision problem for the r­clique [88, 51]). Given an undirected graph
G = (N,E) and an integer r, determine ifG has an r–clique, i.e., that there exists a set of
nodesK with |K|≥ r such that for each pair of nodes inK there is an edge in E between
them.

Theorem 2.28 (Čvokić, Kochetov, Plyasunov, and Savić in [28]). The following problems
are all NP–hard:

(1) the (r|Hp)HMPuPW.

(2) the auxiliary problem in (r|p)HCPuPW.

(3) the follower’s problem in (r|p)HCPuPW.

Proof. (1) The bi–criteria formulation of the follower requires solving the corresponding
(r|Hp)HMPuPW. The values of variables qij,kl (∀i, j, k, l ∈ N) can be precomputed, i.e.,
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we can consider them as constants. From the constraint sets (2.12)–(2.14) we know that
only one route can be established per O–D pair. If ςij,kl = 1, for some k, l ∈ N , then for
all other k′, l′ ∈ N ∧ (k′, l′) ̸= (k, l) we have that ςij,k′l′ = 0, and vice versa. This means
that instead of

∑
u,v∈N ςij,uve

−Θqij,uv , we can write just e−Θqij,uv in the denominator, which
leads to the following reformulation of the first objective:

max
∑

i,j,k,l∈N

wijQij,klςij,kl. (2.33)

whereQij,kl is computed as (qij,kl−cij,kl)
e
−Θqij,kl∑

s,t∈N ρij,ste
−Θtij,uv+e

−Θqij,kl
. As we have already

said, if we show a polynomial reduction from the r­clique decision problem to the standard
decision problem of (r|Hp) HMPuPW, then the follower’s problem is NP–hard.

Consider an r–clique instance G = (N,E), where N is the set of nodes and E is the
set of edges. We can construct a (digraph) network G′ = (N ′, A′) where N ′ = N and
(i, j) ∈ A′ ⊆ N2 if {i, j} ∈ E. Note that for (r|Hp) HMPuPW, the opponent’s network
does not need to satisfy the constraints (2.4)–(2.7), nor the route costs have to be computed
in the sameway. It just needs to be a valid hub and spoke network with non–negative finite
values for the route costs.

Now, assume that in the opponent’s network all established routes are spokes i→i→j→j,
for all available O–D pairs (i, j) ∈ A′. Furthermore, take that Θ ≥ 0, α = 1, and
wij =

2Θ
1+τ

(∀i, j ∈ N), where τ is the solution of equation τ = W0(e
W0(eτ )).

If the r­clique exists, then there is a network (y, ς) in which the hub backbone corre­
sponds to this r–clique. For each inter–hub spoke, both competitors have the same route
costs, which implies the same equilibrium prices with margin 1+τ

Θ
and equal market share.

Therefore, the profit obtained just on the hub backbone is greater than r(r−1)
2

.
On the other hand, the solution existence itself implies the existence of r­clique, be­

cause of constraint (2.15). If the solution with objective value greater then or equal to
r(r−1)

2
does not exists, then we have two cases:

· the objective value of every feasible solution is strictly less than r(r−1)
2

· the set of feasible solutions is empty.

In the first case, we easily reach the contradiction. In the second case, we infer that there
is no r–clique.

Similarly we analyze the situation when α ∈ [0, 1). We need to assume that the oppo­
nent’s route costs are all discounted.

(2) We can easily see that almost the same approach can be used to prove that
the auxiliary subproblem is also NP–hard. The proof follows basically the same
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scheme as the proof of previous theorem, except that Qij,kl is computed as (tij,kl −
cij,kl)

ρij,kle
−Θtij,kl∑

u,v∈N ρij,uve
−Θtij,uv+e−Θqij,uv

.

(3) From (1) and (2) we have that (3) follows directly.

Although, the follower’s problem is NP–hard, the corresponding allocation problem is
easier to solve.

Theorem 2.29 (Čvokić, Kochetov, Plyasunov, and Savić in [28]). In (r|p)HCPuP, the
linear relaxation of the corresponding allocation problem for the follower has an integer
solution.

Proof. Regarding the follower’s first objective, for an O–D pair (i, j) ∈ N2, the highest
coefficient of variable ςij,kl (calculated form (2.33)) determines the optimal route. More­
over, a linear relaxation where ςij,kl ∈ [0, 1] must have an integer optimal solution. If we
assume that the fractional optimal solution exists for the linear relaxation, we can easily
see that the corresponding first objective function (2.33) will have a linear deviation.

Regarding the second follower’s objective, we know that solution should always be
from the set of optimal solutions concerning the first objective. Observe that the higher
values of e−Θqij,uv (u, v ∈ N) (i.e. the lower values of qij,uv) are more preferable, for a
given O–D pair (i, j) ∈ N2. If we assume that the fractional optimal solution exists for
this linear relaxation, we can easily see that the corresponding second objective function
will have a linear deviation.

From the proof of this statement, the following two corollaries follow.

Corollary 2.30. The allocation problem of (r|Hp)HMPuPW is polynomially solvable.

Corollary 2.31. The allocation problem of auxiliary problem is polynomially solvable.

Because finding the optimal solution for the leader requires solving the follower’s NP–
hard problem, we could assess that the leader’s problem is NP–hard. The proof of a state­
ment about the leader’s computational complexity is based on the vertex cover decision
problem.

Problem 2.2 (The decision problem for the vertex cover [88, 51]). Given an undirected
graphG = (N,E) and an integer p, determine ifG has a vertex cover, i.e., if there is a set
of vertices C with |C|≤ p such that for each edge {i, j} ∈ E, either i or j is in C.

Theorem 2.32 (Čvokić, Kochetov, Plyasunov, and Savić in [28]). The (r|p)HCPuPW is
NP–hard.
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Proof. Given an instance of vertex cover problem on an undirected graph G = (N,E),
we can construct a digraph G′ = (N ′, A′) where N ′ = N and A′ = N ′ ×N ′. Let

wij =

1, if {i, j} ∈ E

0, otherwise.
(2.34)

We need to show that there exists a vertex cover C with |C|≤ p if and only if exists the
set of p nodes Hp, in G′, such that the follower’s network will coincide with the leader’s
one on edges (i, j), for which wij = 1. We know from the expression (2.1) what are
the margins for both competitors, if their corresponding profits are equal. Therefore, we
are able to know exactly the leader’s profit, from which we can derive the corresponding
standard decision problem.

(→) Assume that the vertex cover problem has a solution C ⊆ N and |C|≤ p. We can
let Hp ⊇ C and observe that if i ∈ Hp or j ∈ Hp then the unit flow wij may get value
1, depending on their corresponding memberships to E. In all other cases, wij is always
equal to 0. In other words, the pricing can be important only for those O–D pairs (i, j)
that have at least i or j in Hp. The leader and follower could only compete for the profit
on those routes in which each flow is routed via one (single) spoke with at least one end
in C (a subset of Hp). In this situation, the follower can not choose strictly better routes
for O–D pairs than those the leader is already using.

(←) Suppose that Hp ⊆ N ′(= N) is such that the best follower’s response is to copy
the leader’s solution on all O–D pairs for which wij = 1 and r > p. If Hp does not
contain as a subset the vertex cover ofG, then there exists an edge {i, j} ∈ E and i /∈ Hp

and j /∈ Hp (otherwise Hp would be a vertex cover). Then, on that particular O–D pair
(i, j), the follower can profit more than the leader, if his hub backbone includes i or j.
In this situation, the follower is offering a non–stop (direct) route to the customers, while
the leader has to route the flow through the intermediate hubs. However, this scenario
contradicts the assumption that the follower is using the same solution as the leader, as his
best one.

Hence, we can conclude that the standard decision problem for the leader is polynomi­
ally equivalent to the vertex cover decision problem.

2.5 Optimal Routes

The function (2.2) describes the best response pricing. Knowing that for every O–D pair
each competitor proposes only one price, we realize that (2.2) can be reduced to

λij,kl(N, c, ρ, t, ς) = ςij,kl

(
cij,kl +

1

Θ

(
1 +W0

(
e−Θcij,kl−1

e−Θtij,uv

)))
, (2.35)
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taking that the opponent has established a route i→u→v→j with its corresponding price
tij,uv. Under the assumption that the opponent’s price is fixed, we can address the par­
ticular income on a given O–D pair as a function of corresponding cost c and derive the
following global optimization problem

max
c≥0

1

Θ

(
1 +W0(e

−Θ(c−t)−1)
) e−Θ(c+ 1

Θ(1+W0(e−Θ(c−t)−1)))

e−Θt + e−Θ(c+ 1
Θ(1+W0(e−Θ(c−t)−1)))

. (2.36)

Using the identity eW0(x) = x
W0(x)

this problem can be reduced to

max
c≥0

1

Θ
W0(e

−Θ(c−t)−1). (2.37)

The corresponding first–order condition is W0

(
e−Θ(c−t)−1

)
= 0 and the solution of this

equation does not exist onR. Therefore, no stationary point exists. The objective function
in (2.37) is monotone decreasing onR+, and from this we infer that the lower–cost is more
preferred in (2.37). This observation gives us an indication that the lower–cost routes
could be better under the Bertrand–Nash price equilibrium.

Because the equilibrium price equations hold for both players, in the following state­
ments we will denote the one considering different route costs – as a competitor and the
one which route cost is fixed – as an opponent.

Theorem 2.33. For every O–D pair (i, j) ∈ N2, fixed set of hubsH and fixed opponent’s
route cost, a lower–cost route yields a higher equilibrium price margin, compared to the
corresponding one of higher–cost route.

Proof. W.l.o.g., we can drop the O–D indexes and just focus on the hubs. If cst < ckl,
then we have that

eτ+Θ(cst−cuv) < eτ+Θ(ckl−cuv), i.e., (2.38)

W0(e
τ+Θ(cst−cuv)) < W0(e

τ+Θ(ckl−cuv)), i.e., (2.39)
eτ

W0(eτ+Θ(cst−cuv))
>

eτ

W0(eτ+Θ(ckl−cuv))
, i.e., (2.40)

W0

(
eτ

W0(eτ+Θ(cst−cuv))

)
> W0

(
eτ

W0(eτ+Θ(ckl−cuv))

)
. (2.41)

Regrading the Eq. (2.28), the intersection of a linear function with the left–hand side of
inequality (2.41) must be higher than the intersection with the right–hand side. Therefore,
it is easy to infer from (2.29) that a higher–margin corresponds to a lower–cost route.

Of course, we can not claim that the profit is higher because of this. The lower–cost
route could yield a lower price, regardless of a little bit higher margin. This phenomenon,
a counter–intuitive at first sight, is depicted in the following example.

65



Example 2.1. Consider a setting in which Θ = 1 and the competitors share the same
route with transportation cost c = 1. The Bertrand­Nash price equilibrium equations
(2.28)–(2.29) indicate that for both of them the margin is equal to 2.

Now, assume that a follower can use a route that is half the cost. Incidentally, we can
see that in this case, the leader’s and follower’s equilibrium prices are going to be 1.59
and 1.92, respectively. In other words, the follower’s margin is higher than the leader’s
one, but the relation is opposite for the corresponding prices. N

Theorem 2.34. For every O–D pair (i, j) ∈ N2, fixed set of hubsH and fixed opponent’s
route cost, a competitor’s lower–cost route yields a lower equilibrium price, compared to
the corresponding one of higher–cost.

Proof. We will ignore route indexes in the interest of clarity. Denote the opponent’s route
cost as c̄. The theorem implies that for two routes with costs c1 and c2, when c1 ≤ c2 the
following inequality holds

c1 +
τ1 + 1

Θ
≤ c2 +

τ2 + 1

Θ
, (2.42)

when τ1 and τ2 are computed as

τ1 = W0

(
eτ1

W0(eτ1+Θ(c1−c̄))

)
, (2.43)

τ2 = W0

(
eτ2

W0(eτ2+Θ(c2−c̄))

)
. (2.44)

The inequality (2.42) is equivalent to

Θ(c2 − c1) ≥ τ1 − τ2. (2.45)

The Eq. (2.43) can be rewritten as

τ1 = W0

(
eτ1

W0 (eτ1−Θ(c2−c1)−Θ(c̄−c2))

)
. (2.46)

Again, for the sake of clarity, we can substitute Θ(c̄ − c2) and Θ(c2 − c1) with a and b,
respectively, to obtain the following simpler expressions for (2.43) and (2.44):

τ1 = W0

(
eτ1

W0(eτ1−(a+b))

)
, (2.47)

τ2 = W0

(
eτ2

W0 (eτ2−a)

)
. (2.48)

Also, the inequality (2.45) becomes

b+ τ2 ≥ τ1. (2.49)

The following two equations immediately follow from Eq. (2.47)–(2.48) and identity
W0(x) = ln

(
x

W0(x)

)
:
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τ1W0

(
eτ1−(a+b)

)
− 1 = 0, (2.50)

τ2W0

(
eτ2−a

)
− 1 = 0. (2.51)

We can take the left hand side of (2.51) to be a function and translate it to the right for
vector (b, 0). This operation will yield a new function

Ta+b(τ) = (τ − b)W0

(
eτ−(a+b)

)
− 1. (2.52)

Obviously, for every τ ∈ R we have that

(τ − b)W0

(
eτ−(a+b)

)
− 1 ≤ τW0

(
eτ−(a+b)

)
− 1, (2.53)

where right hand side of (2.53) is practically the left hand side of (2.50). Therefore, the
zero of Ta+b is larger than the solution of Eq. (2.50). From here we conclude that the
inequality (2.49) holds.

Now, we need to prove that the lowest–cost route generates the highest profit. We
remind the reader that a profit is affected by a margin and a market share combined. Fur­
thermore, both of them depend on the equilibrium prices, which are affected by route
costs, as it was described in Theorems 2.33 and 2.34.

Theorem 2.35. For every O–D pair (i, j) ∈ N2, fixed set of hubsH , and fixed opponent’s
route cost, the lowest–cost route is the optimal one.

Proof. As it was done in the proof of previous two theorems, we ignore the route indexes
in the interest of clarity. Denote the opponent’s route cost as c̄. The theorem implies that
by lowering the route cost c, i.e., by increasing a difference c̄− c, the corresponding profit
computed as

(t− c)
e−Θt

e−Θt + e−Θq
(2.54)

will increase, too. Here, t and q are the equilibrium prices corresponding to the route costs
c and c̄, respectively.

From the opponent’s viewpoint, the equivalent form of Eq. (2.28) is

τ̄W0

(
eτ̄+Θ(c̄−c)

)
− 1 = 0. (2.55)

Increasing c̄ − c, i.e., decreasing c, leads to the increased value of Lambert W function
term. Therefore, the solution of Eq. (2.55) decreases. In other words, we have that the
lower–cost route yields a lower opponent’s equilibrium price, too.

For equilibrium prices t and q we have the following two respective forms of Eq.
(2.28): τW0

(
eτ−Θ(c̄−c)

)
− 1 = 0 and τ̄W0

(
eτ̄+Θ(c̄−c)

)
− 1 = 0. Subtracting these two

equations we obtain
τW0

(
eτ−Θ(c̄−c)

)
= τ̄W0

(
eτ̄+Θ(c̄−c)

)
(2.56)
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This ratio of τ and τ̄ can be evaluated from the last equation as

τ

τ̄
=

W0

(
eτ̄+Θ(c̄−c)

)
W0 (eτ−Θ(c̄−c))

(2.57)

Increasing c̄− c leads to the increased ratio of τ
τ̄
. Because e−Θx is monotone, we have that

e−Θτ

e−Θτ increases, as denominator decreases faster than numerator. In other words, increasing
c̄−c, i.e., taking lower–cost routes, leads not only to a larger margin (as the Theorem 2.33
states), but it also leads to a (slightly) larger market share. Therefore, taking into account
Eq. (2.54) the theorem holds.

On Fig. 2.4 we can see an illustration of both price and profit deviations when route
cost c changes its value, in a setting where c̄ = 3 and Θ = 3. At point c = 0, i.e., when
c̄ − c = 3, the corresponding profit deviations are maximal. However, taking the route
cost c closer to c̄ (which always remains the same), leads to a situation in which prices and
profits are equal. Furthermore, we can see that decrease in the route cost c yields lower
prices for the opponent, as well as for the competitor. This mechanism does not work for
the profits. The competitor’s profit increases, while the opponent’s one decreases.

(a) (b)

Figure 2.4: Curves of (a) price deviations and (b) profit deviations. The blue (ordinary) and orange (dotted)
lines correspond to the competitor and opponent, respectively.

Remark 2.36. The proof of Theorem 2.35 does not depend substantially on Theorem 2.34.

Remark 2.37. The statements of Theorems 2.33, 2.34, and 2.35 do not assume the role of
competitors, because they arise from the equilibrium equations.

From these three theorems, we immediately infer the following two corollaries.

Corollary 2.38. If both competitors in (r|p)HCPuPW have their corresponding hub back­
bones fixed, then the sum of (2.3) and (2.10) is a constant.

In other words, an allocation problem derived from (r|p)HCPuPW when hub back­
bones are fixed, does not require AM, i.e., a bi–objective formulation of the follower’s
model.
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Corollary 2.39. In (r|p)HCPuPW, the AM solution will not affect the leader’s profit
if its hub backbone is the same as the one obtained by solving the corresponding
(r|Hp)HMPuPW.

2.6 Reformulation of Follower’s Model

Having an integer linear programming formulation of the problem allows us to use state­
of­the­art solvers. In the following subsection, we show how to reformulate our model
for (r|Hp)HMPuPW. Subsequently, we also show how to reformulate AM as an integer
linear program.

2.6.1 Linear Reformulation of Model for (r|Hp)HMPuPW

The entries of (ordered) equilibrium price pairs (tij,uv, qij,kl) (for all i, j, u, v, k, l ∈ N )
can be computed in the preprocessing phase using Eq. (2.28)–(2.29). For every pair we
can define a function aij,uv,kl : {1, 2} → {tij,uv, qij,kl} as

aij,uv,kl(x) =

tij,uv, x = 1

qij,kl, x = 2.
(2.58)

These functions make a foundation for new functions Tij,uv : N2 → R which serve to
extract the first entry from the equilibrium price pair

Tij,uv(k, l) = aij,uv,kl(1). (2.59)

Similarly, we can introduce functions Qij,kl : N
2 → R, defined as

Qij,kl(u, v) = aij,uv,kl(2), (2.60)

to extract the second entry from the equilibrium price pairs. In other words, during
the preprocessing phase, we evaluate function values Tij,uv(k, l) and Qij,kl(u, v) for all
i, j, u, v, k, l ∈ N .

Recall that the leader’s network is fixed when we are solving the follower’s problem.
From (2.6) we realize that the numerator in the follower’s first objective can be multiplied
by
∑

u,v∈N ρij,uv, without affecting its value. Therefore, in the numerator we can write∑
u,v∈N

ρij,uvwij (Qij,kl(u, v)− cij,kl) ςij,kle
−ΘQij,kl(u,v). (2.61)

If ςij,kl = 1 for the particular k, l ∈ N , then for all other k′, l′ ∈ N ∧ (k′, l′) ̸= (k, l)

constraint (2.14) stipulates that ςij,k′l′ = 0. Therefore, instead of
∑

u,v∈N ςij,uve
−Θqij,uv ,

we can just write e−Θqij,kl in the denominator.
Theorem 2.29 states that the linear relaxation of corresponding allocation problem for

the follower has an integer solution, i.e., we can relax the route variables ςij,kl (for all
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i, j, k, l ∈ N ). Therefore, we have a newway to formulate the model for (r|Hp)HMPuPW
as

max
∑

i,j,k,l∈N

wij

∑
u,v∈N ρij,uv (Qij,kl(u, v)− cij,kl) e

−ΘQij,kl(u,v)∑
u,v∈N ρij,uv

(
e−ΘTij,uv(k,l) + e−ΘQij,kl(u,v)

) ςij,kl (2.62)

s.t. (2.12)–(2.15), (2.63)

yk ∈ {0, 1}, ∀k ∈ N, (2.64)

ςij,kl ∈ [0, 1], ∀i, j, k, l ∈ N. (2.65)

This formulation has |N | integer and |N |4 continuous variables, compared to |N |4+|N |
and 2|N |4 in the original version. The number of constraints is 2|N |3+|N |2+1, compared
to 2|N |4+2|N |3+|N |2+1. Interestingly, the reformulation gives us a model with reduced
number of variables and constraints.

Remark 2.40. For this problem, one needs to pay special attention to the preprocessing.
In case of one level problems, this issue is rarely addressed, if ever. The preprocessing
phase for the lower–level model is considered being part of the algorithm that solves the
upper–level one. In our case, the preprocessing consists of computing the Bertrand–Nash
price equilibrium for every pair of routes, which has a computational complexityO(|N |6).

2.6.2 Linear Reformulation of AM

The AM is a non–linear fractional mathematical program. Concerning the leader’s routes
we have two cases:

(1) ρij,kl = 1, and we can write e−Θtij,kl instead of
∑

u,v∈N ρij,uve
−Θtij,uv , in the denom­

inator;

(2) ρij,kl = 0, i.e., it does not matter what is in the denominator.

Therefore, we should focus only on the first case. The denominator can look as

e−Θtij,kl +
∑
u,v∈N

e−Θqij,uv . (2.66)

Constraint (2.14) allows us to multiply the left–term with
∑

u,v∈N ςij,uv. For a given O–D
pair (i, j) we are searching for an adequate follower’s route through hubs u and v, when
the leader’s route i→k→l→j is fixed. Using the extraction functions from the previous
subsection, we can write the last expression as∑

u,v∈N

ςij,uv
(
e−ΘTij,kl(u,v) + e−ΘQij,uv(k,l)

)
. (2.67)
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Also, because of (2.14) we can multiply the whole fraction with
∑

u,v∈N ςij,uv to obtain
the following equivalent expression for the objective

max
∑

i,j,k,l∈N

∑
u,v∈N

ςij,uvwij (Tij,kl(u, v)− cij,kl) ρij,kle
−ΘTij,kl(u,v)∑

m,n∈N ςij,mn

(
e−ΘTij,kl(m,n) + e−ΘQij,mn(k,l)

) . (2.68)

The same analysis for the leader’s routes can be applied to those of the follower. Therefore,
we can substitute the objective (2.11) with the following linear one

max
∑

i,j,k,l∈N

∑
u,v∈N

ςij,uvwij (Tij,kl(u, v)− cij,kl) ρij,kle
−ΘTij,kl(u,v)

e−ΘTij,kl(u,v) + e−ΘQij,uv(k,l)
. (2.69)

The Corollary 2.39 states that we are not interested in follower’s networks that share the
same hub backbone. Following this theoretical observation, we introduce another linear
constraint, as a valid inequality, in order to differentiate obtained solutions from those that
share the same hub backbone with (r|Hp)HMPuPW∑

k∈N

y∗kyk ≤ r − 1. (2.70)

Here, y∗k represent the optimal hub backbone from the previously solved (r|Hp)HMPuPW.
Finally, we provide an integer linear programming formulation of AM:

max
∑

i,j,k,l∈N

∑
u,v∈N

ςij,uvwij (Tij,kl(u, v)− cij,kl) ρij,kle
−ΘTij,kl(u,v)(

e−ΘTij,kl(u,v) + e−ΘQij,uv(k,l)
) (2.71)

s.t. (2.12)–(2.15), (2.70),∑
i,j,k,l∈N

wij

∑
u,v∈N ρij,uv (Qij,kl(u, v)− cij,kl) e

−ΘQij,kl(u,v)∑
u,v∈N ρij,uv

(
e−ΘTij,uv(k,l) + e−ΘQij,kl(u,v)

) ςij,kl ≥ F ∗, (2.72)

yk ∈ {0, 1}, ∀k ∈ N, (2.73)

ςij,kl ∈ [0, 1], ∀i, j, k, l ∈ N, (2.74)

where F ∗ represents the optimal value of the prior (r|Hp)HMPuPW.
This reformulation of AM has |N | integer and |N |4 continuous variables, compared

to |N |4+|N | integer and 2|N |4 continuous ones in the original formulation. The number
of constraints is 2|N |3+|N |2+3, while the original program has 2|N |4+2|N |3+|N |2+1

of them. Interestingly, the new linear formulation of AM is much more compact than the
original one. The preprocessing is not needed, because the equilibrium price pairs are the
same as those for the (r|Hp)HMPuPW.

71



Chapter 3

Solution Approach

If you do not have someone to ask, and you do not know
what to do, ask a little child and it will give you an an­
swer.

Old Serbian proverb

Previously, we have introduced some relevant properties of (r|p)HCPuPW. In this chap­
ter, we describe how this problem can be solved. The goal of solution approach is to find
the optimal or near–optimal solution of high quality, hopefully without an unwanted high
computational effort. For an optimization problem, a near–optimal solution is a feasible
one with an objective function value within a specified range from the (usually unknown)
optimal objective function value [100]. The computational effort for optimization prob­
lems can be measured as the computational time and space consumed during the execution
of solution approach. According to one classification, the solution approaches can be dis­
tinguished between two different types:

• general methods;

• specific problem class methods.

The first type can be divided into local and global optimization methods. Except for
specific problems, the local optimization methods only provide locally optimal results.
However, their computational cost is usually much lower than those of global ones.

On the other hand, solution approaches can also be classified into:

• exact methods — finding the optimal solution is guaranteed;

• approximation methods — sub–optimal algorithms with provable guarantees about
the quality of their output solution;

• heuristics— a guarantee of any kind is not implied, but executions on a valid sample
of test instances show that high–quality solutions can be easily found.
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Usually, an exact optimization method is the solution approach of choice if it can solve
an optimization problem with an effort that grows polynomially with the problem size. As
we saw in Chapter 2, the linear relaxation of follower’s problem, and the corresponding
allocation problems belong to the class P . The situation is different if a problem is NP–
hard, as the decision about the number of alternatives is highly combinatorial. In those
cases, even instances of medium size could be intractable. Moreover, even the approxi­
mation methods may not suffice for practical applications.

These issues are usually resolved by using heuristics as they often show excellent per­
formance for many NP–hard problems of practical relevance. In particular, there is a
trade–off between a guarantee for the solution quality and a computational effort. Roughly
speaking, heuristics can be distinguished as the problem–specific heuristics, metaheuris­
tics, and matheuristics.

The problem–specific heuristics should be based on a robust underlying theory: they
are either derived in a top–down manner from the theory about the problem model or
based on experimental and real–world instances. Others are just so–called rules of thumb
based on a real–world observation or experience, sometimes without even a glimpse of
theory. The later are therefore exposed to a more significant number of pitfalls.

A metaheuristic is a heuristic framework designed to find, generate, or select a partial
search algorithm to find sufficiently good solutions to an optimization problem. They are
convenient when the information is imperfect, incomplete, or with limited computational
capacities. It samples a too large solution set and may make few assumptions about the
optimization problem being solved. These properties make them usable for a variety of
problems, hence the origin of name. Here we present a small list of some well–known
metaheuristic approaches for combinatorial optimization problems:

• simulated annealing;

• tabu search;

• greedy randomized search procedure;

• variable neighborhood search;

• evolutionary algorithms;

• particle swarm optimization;

• artificial immune systems.

Matheuristics are solution approaches for the optimization problem created by the
inter–operation of metaheuristics and mathematical programming techniques. Some fea­
tures are derived or proved from the corresponding mathematical model of the optimiza­
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tion problem, which are then utilized in the part of (meta)heuristic algorithm for the
exploitation. Occasionally, in the literature, they are called a model–based heuristics.
One should be aware that the use of mathematical programming techniques as heuris­
tics to solve optimization problems, is much older and much more widespread than the
matheuristics. However, this is not the case with metaheuristics. Even the very idea of
designing mathematical programming methods specifically for a heuristic solution has
innovative traits. This viewpoint is different from the one when enough computational
resources are not available and thus exact methods turn into approximation methods or
heuristics. The merging of mathematical programming techniques and metaheuristics can
go two–ways:

(1) mathematical programming is used to improve or design metaheuristics;

(2) metaheuristics are used to improve known mathematical programming techniques.

The first of these two directions is more studied in the literature. On the other hand, the
second direction is widely used in commercial solvers for the exact solving of optimization
problems.

In the following section of this chapter, we present the Gurobi Optimizer, a current
state­of­the­art commercial solver for finding the optimal solution of (integer) linear pro­
grams, and how it can be used to find optimal solutions of follower’s problem. Afterward,
for the leader, an alternating heuristic and variable neighborhood search are presented as
matheuristic solution approaches for the leader’s problem.

3.1 Exact Solver for Follower’s Model

Designing an efficient branch­and­cut algorithm to solve mixed–integer linear program
from scratch is far beyond the scope of this dissertation. Following the latest develop­
ment in this area, one can be quite content with using a commercial optimization solver
for making choices regarding preprocessing, choosing branching variables, and whether
to branch or cut at a current subproblem. Therefore, the follower’s model or the corre­
sponding derived models will be solved by an exact solver.

Gurobi Optimizer [56], the product of Gurobi Optimization, LLC, is a state­of­
the­art commercial optimization solver intended to solve linear programs, quadratic
programs, quadratically constrained programs, mixed–integer linear programs, mixed–
integer quadratic programs, and mixed–integer quadratically constrained program. The
company was founded in 2008 and named according to the surnames of its founders [57]:
Zonghao Gu, Edward Rothberg, and Robert Bixby. Bixby was also the founder of CPLEX
(commercial optimization solver of IBM corp.) [58], while Rothberg and Gu were leading
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its development for almost a decade [59, 60]. According to [56], the Gurobi Optimizer
supports a variety of programming and modeling languages including:

• object–oriented interfaces for C++, Java, .NET, and Python;

• matrix–oriented interfaces for C, MATLAB, and R;

• links to standard modeling languages: AIMMS, AMPL, GAMS, and MPL;

• links to Excel through their Analytic Solver and Solver SDK products.

The Gurobi Optimizer also includes several features to support the building of optimiza­
tion models including:

• flexible prioritization for multi­objective models;

• general constraints such as MIN/MAX, ABS, AND/OR, and indicator constraints
which help us to avoid turning commonly occurring constraints in linear equivalents;

• models with convex, piecewise–linear objective functions, to capture certain non–
linear problems;

• arbitrary piecewise–linear objective functions, to make it easier to express this com­
mon modeling feature;

• distributed tuning, to speed up the exploration of parameter settings;

• cloud deployment and client–server computing.

The solver uses sophisticated branch­and­cut framework with presolve procedures,
cutting planes, heuristics, and parallelism. In addition to this, it includes a long list of
additional techniques. Some of them are a sophisticated branch variable selection, node
presolve, symmetry detection, and disjoint subtree detection.

The process of development and deployment of optimization problems using Python
API is vastly simplified using an Anaconda data science platform [3]. This non–
commercial software can combine the Gurobi Optimizer with Python, Spyder Integrated
Development Environment, and JupyterLab notebook interface. Gurobi Optimization,
LLC, allows a full–featured university version of Gurobi Optimizer that can be installed
on a single physical machine. This version has no limits on model size, and it is oriented
explicitly for use by students, faculty, and staff at a recognized degree–granting academic
institutions. The license must be activated while connected through the university net­
work.
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In the following codes we will see how mathematical formulations for (r|Hp) HM­
PuPW (2.62)–(2.65) and auxiliary problem (2.71)–(2.74) can been coded using the cor­
responding Python API. Python is a well–known computer programming language, so it
will not be presented here. The Python functions use the following parameters:

• route_costs for a data structure in which the costs of all possible routes are stored;

• lead_net for a data structure in which the given network for the leader is stored;

• n for the instance size;

• r for the number of hubs that follower needs to locate;

• w for a data structure in which the demands for all possible O–D pairs are stored;

• Theta for the sensitivity parameter Θ;

• F for the data structure which represents the follower’s optimal objective value.

The Python definition of prototype function for solving (r|Hp)HMPuPW by Gurobi,
using the Python API, is given in the Code 3.1. The body of this function is self–
explanatory, as the appropriate Python comments and docstrings are given.

1 de f med iano id ( r o u t e _ c o s t s , l e a d_n e t , n , r , w, The ta ) :
2 ’ ’ ’ med iano id ( np . a r r a y , t u p l e , i n t , i n t , np . a r r a y , f l o a t ) −>
3 ( f l o a t , d i c t )
4

5 C r e a t e s a Gurobi Python model f o r ( r | H_p )HMPuPW ac co r d i n g t o
6 i t s l i n e a r r e f o rm u l a t i o n . So l v e s t h e problem f o r a g iven
7 i n s t a n c e . Re t u r n s t h e o b j e c t i v e va lue , hub l o c a t i o n s , and
8 e s t a b l i s h e d r o u t e s .
9 ’ ’ ’
10

11 # C r e a t i n g t h e empty model .
12 m = gpy . Model ( ” med iano id ” )
13

14 # C r e a t i n g v a r i a b l e s ’ d i c t i o n a r i e s .
15 y = {}
16 z e t a = {}
17

18 # Adding v a r i a b l e s .
19 f o r i i n r ange ( n ) :
20 y [ i ] = m. addVar ( v t ype=gpy .GRB.BINARY, name= f ” y_{ i } ” )
21 f o r i i n r ange ( n ) :
22 f o r j i n r ange ( n ) :
23 f o r k i n r ange ( n ) :
24 f o r l i n r ange ( n ) :
25 z e t a [ i , j , k , l ] = m. addVar (
26 name= f ” z e t a _ { i }_{ j }_{k}_{ l } ”
27 )
28

29 # Adding c o n s t r a i n t : t h e number o f hubs i s e qu a l t o r .
30 m. addCons t r ( gpy . quicksum ( y [ k ] f o r k i n r ange ( n ) ) == r )
31

32 # Adding c o n s t r a i n t s : on ly one r o u t e i s a l l owed .
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33 f o r i i n r ange ( n ) :
34 f o r j i n r ange ( n ) :
35 m. addCons t r ( gpy . quicksum (
36 z e t a [ i , j , k , l ] f o r k i n r ange ( n ) f o r l i n r ange ( n )
37 ) == 1
38 )
39 f o r l i n r ange ( n ) :
40 m. addCons t r (
41 gpy . quicksum (
42 z e t a [ i , j , k , l ] f o r k i n r ange ( n )
43 ) <= y [ l ]
44 )
45 m. addCons t r (
46 gpy . quicksum (
47 z e t a [ i , j , l , k ] f o r k i n r ange ( n )
48 ) <= y [ l ]
49 )
50

51 # Adding t h e o b j e c t i v e ( p r o f i t ) f u n c t i o n .
52 p r o f i t = gpy . quicksum (
53 w[ i ] [ j ] * \
54 e q u i l i b _ p r o f i t s ( r o u t e _ c o s t s , l e a d_n e t , z e t a , i , j , k , l ) \
55 f o r i i n r ange ( n ) f o r j i n r ange ( n ) \
56 f o r k i n r ange ( n ) f o r l i n r ange ( n )
57 )
58

59 # S e t t i n g t h e o b j e c t i v e .
60 m. s e t O b j e c t i v e ( p r o f i t , gpy .GRB.MAXIMIZE )
61

62 # So l v i ng t h e problem ( c a l l i n g t h e o p t im i z e r ) .
63 m. op t im i z e ( )
64

65 # E x t r a c t i n g t h e op t ima l s o l u t i o n .
66 o b j v a l = m. g e tO b j e c t i v e ( ) . g e tVa lu e ( )
67 hubs = m. g e t A t t r ( ’ x ’ , y )
68 r o u t e s = m. g e t A t t r ( ’ x ’ , z e t a )
69

70 # Re t u r n i n g t h e op t ima l s o l u t i o n .
71 r e t u r n ob j v a l , hubs , r o u t e s
72

Code 3.1: Python code for the linear variant of (r|Hp)HMPuPW model.

Solving the auxiliary model is specified with a Python prototype function auxiliary
in a Code 3.2. As we can see, the parameter list is almost the same as in the previous
function, except that we have a foll_net and F parameters, representing the follower’s
network and its optimal profit, respectively.

1 de f a u x i l i a r y ( r o u t e _ c o s t s , l e a d_n e t , f o l l _ n e t , n , r , w, Theta , F ) :
2 ’ ’ ’ a u x i l i a r y ( np . a r r a y , t u p l e , t u p l e , i n t , i n t , np . a r r a y ,
3 f l o a t ) −> ( d i c t , d i c t )
4

5 C r e a t e s a Gurobi Python model f o r t h e a u x i l i a r y subprob lem
6 a c c o r d i n g t o i t s l i n e a r r e f o rm u l a t i o n . So l v e s t h e problem
7 f o r a g i ven i n s t a n c e . Re t u r n s t h e op t ima l hub l o c a t i o n s and
8 e s t a b l i s h e d r o u t e s .
9 ’ ’ ’
10

11 # E x t r a c t i n g mediano id hubs .
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12 y _ s t a r = f o l l _ n e t [ 0 ]
13

14 # C r e a t i n g t h e empty model .
15 m = gpy . Model ( ” a u x i l i a r y ” )
16

17 # C r e a t i n g v a r i a b l e s ’ d i c t i o n a r i e s .
18 y = {}
19 z e t a = {}
20

21 # Adding v a r i a b l e s .
22 f o r i i n r ange ( n ) :
23 y [ i ] = m. addVar ( v t ype=gpy .GRB.BINARY, name= f ” y_{ i } ” )
24 f o r j i n r ange ( n ) :
25 f o r k i n r ange ( n ) :
26 f o r l i n r ange ( n ) :
27 z e t a [ i , j , k , l ] = m. addVar (
28 name=” z e t a _ { i }_{ j }_{k}_{ l } ”
29 )
30

31 # Adding c o n s t r a i n t : t h e number o f hubs i s e qu a l t o r .
32 m. addCons t r ( gpy . quicksum ( y [ k ] f o r k i n r ange ( n ) ) == r )
33

34 # Adding c o n s t r a i n t s : on ly one r o u t e i s a l l owed .
35 f o r i i n r ange ( n ) :
36 f o r j i n r ange ( n ) :
37 m. addCons t r ( gpy . quicksum (
38 z e t a [ i , j , k , l ] \
39 f o r k i n r ange ( n ) \
40 f o r l i n r ange ( n ) ) == 1
41 )
42 f o r l i n r ange ( n ) :
43 m. addCons t r (
44 gpy . quicksum (
45 z e t a [ i , j , k , l ] f o r k i n r ange ( n )
46 ) <= y [ l ]
47 )
48 m. addCons t r (
49 gpy . quicksum (
50 z e t a [ i , j , l , k ] f o r k i n r ange ( n )
51 ) <= y [ l ]
52 )
53

54 # Adding t h e a u x i l i a r y c o n s t r a i n t .
55 m. addCons t r (
56 gpy . quicksum (
57 w[ i ] [ j ] * \
58 e q u i l i b _ p r o f i t s ( l e a d_n e t , z e t a , i , j , k , l ) * \
59 z e t a [ i , j , k , l ] \
60 f o r i i n r ange ( n ) f o r j i n r ange ( n ) \
61 f o r k i n r ange ( n ) f o r l i n r ange ( n )
62 ) >= F , name=” a u x i l i a r y _ c o n s t r a i n t ”
63 )
64

65 # Adding t h e o b j e c t i v e ( p r o f i t ) f u n c t i o n .
66 l e a d e r _ p r o f i t = gpy . quicksum (
67 w[ i ] [ j ] * e q u i l i b _ p r o f i t s (
68 r o u t e _ c o s t s , l e a d_n e t , z e t a , i , j , k , l
69 ) \
70 f o r i i n r ange ( n ) f o r j i n r ange ( n ) \
71 f o r k i n r ange ( n ) f o r l i n r ange ( n )
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72 )
73

74 # I g n o r i n g t h o s e s o l u t i o n s t h a t s h a r e t h e same hub backbone
75 # as mediano id problem
76 m. addCons t r (
77 gpy . quicksum (
78 y _ s t a r [ k ] * y [ k ] f o r k i n r ange ( n )
79 ) <= r − 1
80 )
81

82 # S e t t i n g t h e o b j e c t i v e .
83 # The l e a d e r has o p t i m i s t i c e x p e c t a t i o n s , i . e .
84 # t h e f o l l ow e r i s behav ing b e n e v o l e n t l y .
85 m. s e t O b j e c t i v e ( f low_income , gpy .GRB.MAXIMIZE )
86

87 # So l v i ng t h e problem ( c a l l i n g t h e o p t im i z e r ) .
88 m. op t im i z e ( )
89

90 # E x t r a c t i n g t h e op t ima l s o l u t i o n .
91 hubs = m. g e t A t t r ( ’ x ’ , y )
92 r o u t e s = m. g e t A t t r ( ’ x ’ , z e t a )
93

94 # Re t u r n i n g t h e op t ima l s o l u t i o n .
95 r e t u r n hubs , r o u t e s
96

Code 3.2: Python code for the linear variant of auxiliary model.

Remark 3.1. There is no need to return the optimal objective value in auxiliary Python
function, as it is equal to F .

An example of Gurobi Optimizer log–file is given in the following lines:

Gurobi Optimizer version 9.0.2 build v9.0.2rc0 (win64)
Optimize a model with 946 rows, 4510 columns and 14410 nonzeros
Model fingerprint: 0xf13ca6bb
Variable types: 4500 continuous, 10 integer (10 binary)
Coefficient statistics:
Matrix range [1e+00, 1e+00]
Objective range [3e-02, 2e+01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 3e+00]
Presolve time: 0.02s
Presolved: 946 rows, 4510 columns, 14410 nonzeros
Variable types: 4500 continuous, 10 integer (10 binary)
Found heuristic solution: objective 73.3523777
Found heuristic solution: objective 103.3777838

Root relaxation: objective 1.132394e+02, 445 iterations,
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0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/
Node Time

0 0 113.23935 0 5 103.37778 113.23935 9.54% - 0s
H 0 0 112.76523 113.23935 0.42% - 0s
0 0 113.06432 0 4 112.76524 113.06432 0.27% - 0s
0 0 113.06432 0 5 112.76524 113.06432 0.27% - 0s

Cutting planes:
Gomory: 3
MIR: 10
Relax-and-lift: 4

Explored 1 nodes (643 simplex iterations) in 0.10 seconds
Thread count was 8 (of 8 available processors)

Solution count 3: 112.765 103.378 73.3524

Optimal solution found (tolerance 1.00e-04)
Best objective 1.127652365437e+02, best bound 1.127652365437e+02,
gap 0.0000%

Particularly, a medianoid function is called up for a 10–node CAB instance (please,
see [103]) with α = 0.4, Θ = 9, and the leader has chosen a p–HMLP for her network.
For auxiliary model we have basically the same output structure of log–file.

Of course, these Python functions are customizable using different parameter values
and computer programming techniques. The objective of this section is only to share a
user experience on a tool that allows us to implement quite easily complex formulations.

However, a mathematical optimization computer application might also need the func­
tionality for manipulating data. This “non–modeling” expressiveness of the Python API
is called scripting, and it is used in three different situations:

• preprocessing;

• postprocessing;
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• flow control.

When it comes to Codes 3.1 and 3.2, the need for preprocessing is seen in a helper func­
tion equilib_profits. It partially prepares the data which will be used by the Gurobi
model, i.e., its role is to perform a part of the computation concerning Bertrand–Nash
price equilibrium profits for a given leader’s network.

Notably, we need to iterate over the set of all O–D pairs, and for each pair we iterate
over the set of all possible routes. The Bertrand–Nash price equilibrium is computed for
each route addressed, taking into account that we know the leader’s route for that O–D pair.
Afterward, equilibria give us the corresponding profit estimations for both competitors.

Remark 3.2. These computations require O(n4) steps, for instances of n nodes. Comput­
ing the Bertrand–Nash price equilibria and their corresponding profits for each leader’s
network that we examine is a computationally very exhaustive job. This part of the compu­
tation is essentially done in the preprocessing phase using parallel computing and efficient
data structures that support so–called vectorized operations to reduce the model creation
time.

As the above remark has meant to suggest, it is out of the scope to go into details of
equilib_profits function. Therefore, it will not be presented, i.e., only a proposed
accompanying docstring in Code 3.3.

1 e q u i l i b _ p r o f i t s ( . . . )
2 e q u i l i b _ p r o f i t s ( r o u t e _ c o s t s , l e a d e r _ne two rk , z e t a , i , j , k , l ) −>
3 ( f l o a t , f l o a t )
4

5 Compute a Be r t r and −−Nash p r i c e e q u i l i b r i um p r o f i t s f o r a g i ven
6 f o l l owe r ’ s r o u t e i −>k−> l −> j , c on c e r n i n g a g iven l e a d e r _ n e two r k .
7

Code 3.3: Docstring for the equilib_profits function.

The postprocessing is concerned with working on or manipulating obtained solutions
and objective function values in an appropriate way so that they can be used by a solution
approach computer program written to solve the leader’s problem. For example, the op­
timal objective function value obtained after solving the medianoid model is used in the
auxiliary model.

The flow control is used to chain multiple models. Firstly, in developing an optimiza­
tion computer application for the leader’s problem, the auxiliary model must be solved
after the medianoid one. Secondly, we have to solve the follower problem multiple times.
Creating the model from scratch every time is a daunting task. A better approach could be
to have a model, partially created, and on the as–needed basis to complete it by deleting
and adding appropriate objective functions and required constraints.
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3.2 Alternating Heuristic

The alternating heuristic (AH) was firstly presented in [11] by Bhadury et al. in 2003.
Some of the recent applications can be found in [27, 79, 106]. The main idea is built on
Hotelling’s observation that at equilibrium, on a line, the duopoly facilities tend to cluster
together at some central point of the market [65]. While d’Aspermont et al. [42] have
shown that this observation does not hold in the case of variable prices, it does hold in the
case of fixed and equal prices (please, inspect [11]). After that, it was further analyzed
and exploited as a solution approach for many bi–level location problems (the reader is
referred to a small survey of [30, 79, 106, 84, 108]).

Essentially, the AH is similar to coordinate descent (ascend). The same underlying idea
is presented in several widely popular heuristics: Blahut–Arimoto algorithm in coding
theory [14, 7], the expectation–maximization algorithm in statistics [39], the concave–
convex procedure in global optimization [127], or k–means in machine learning [85, 50,
87]. The description of AH for our problem is presented in Algorithm 1.

The instance is represented as a pair of finite associative arrays (x, y∗), according to
the description in Section 2.1. The size of array is |N |. In the algorithm, xi represents the
leader‘s network, during the i­th iteration. Accordingly, yi represents the corresponding
follower‘s network.

The AH starts with the initial incumbent hub and spoke topology, which is obtained by
solving the well known p–median hub location problem (p–HMLP), as a natural choice,
taking into account that the solution of p–HMLP is classified in the same way as the
leader’s problem when it comes to the hub backbone size and spoke allocation. Further­
more, the p–HMLP is well suited for a monopolistic situation, it is simple enough to
implement, and it can be solved in a reasonable amount of time using the state­of­the­art
solver like Gurobi Optimizer. Therefore, we can think of AH as a natural approach to
estimate the evolution of market competition for this setting.

Remark 3.3. The AH can start from the arbitrary feasible hub and spoke network.

In the i­th iteration, (r|Hp)HMPuPW is solved exactly, utilizing the proposed refor­
mulations (2.62)–(2.65).

Each iteration corresponds to one callback of the exact algorithm for the follower’s
problem. In the same iteration, the roles are switched, i.e., for the follower’s obtained
solution, the leader takes his role. This mechanism is portrayed at line 9 of Algorithm 1.
Note that the leader’s profit is computed after the follower’s one.

The termination condition is a cycle detection. It is obvious that this procedure would
converge because the number of all semi–feasible solutions is finite. Moreover, this way,
the AH could capture a pure Nash equilibrium, if it exists. Because (r|Hp)HMPuPW
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and auxiliary problem can be exactly solved (utilizing the proposed reformulations), AH
returns a feasible solution, not just semi–feasible one.

Remark 3.4. For some problem instances, cycles can be very long, and therefore in the
literature, it is not unusual to include the upper bound on the number of iterations in the
termination criterion.

The AM is not solved during the alternation phase, i.e., inside the while–loop. Solving
AM inside the while–loop could lead to undesirable long running times, especially if the
execution time of AM is generally long. Therefore, the AM is solved only at the final step
of AH. If the time limit exceedance is taken as a termination condition, the solving of AM
inside the while–loop could lead to a reduced search, thus affecting the solution quality.

Algorithm 1: AH — Alternating Heuristic
Data: instance arguments
Result: a feasible solution (x, y∗)

1 i← 1
2 xi ← the optimal network of p–HMLP
3 while xi /∈ {xj | j ∈ {1, . . . , i− 1}} do
4 Hp ← the hub backbone of temporary leader’s network xi

5 yi∗ ← the exact solution of (r|Hp)HMPuPW
6 ziF∗ ← the follower’s profit
7 ziL ← the leader’s profit
8 i← i+ 1

9 xi ← y(i−1)∗

10 K ← argmaxj∈{1,...,i} z
j
L

11 pick a random k ∈ K

12 x← xk

13 zL ← zkL
14 zF∗ ← zkF∗
15 y∗ ← the solution of corresponding AM for x and zF∗

Remark 3.5. If a semi–feasible solution (x, y∗) constitutes a pure Nash equilibrium, solv­
ing AM (line 15) can give a feasible solution that does not need to be a Nash equilibrium.

Remark 3.6. AH does not have an optimizing characteristic. In other words, we can not
guarantee that arbitrary extension of any computational resource will eventually help us
to find the optimal solution. This observation is true even if the initial leader’s network is
randomly chosen.

3.3 Variable Neighborhood Search

Variable neighborhood search (VNS), firstly presented byMladenovic and Hansen in [98],
systematically varies neighborhoods and the corresponding change in the landscape during
the search for the global optimum. The VNS algorithms showed excellent performance
and for some location problems they are currently state­of­the­art, e.g., for the r–allocation
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hub location problem [122], single and multiple allocation p–hub maximal covering prob­
lems [69], or for bi–level location problems like a discrete (r|p)–centroid problem [32].
A constructive survey of VNS principles and applications is the recent paper by Hansen
et al. [62].

The VNS relies upon the following three observations:

(O1) a local maximum concerning one neighborhood structure is not necessarily a local
maximum for another neighborhood structure;

(O2) a global maximum is a local maximum for all possible neighborhood structures;

(O3) for many problems, local maximums for one or several neighborhoods are relatively
close to each other.

The first two observations are theoretical and the last one is empirical. For instance, in
the case of HLPs, local and global optimal solutions may have several hubs located at the
same places, but their indices are usually unknown. Therefore, the systematic exploration
of a local optimum neighborhood is required, until a better solution is found (hopefully
the global optimum).

In a given VNS approach, outlined in Algorithm 2, the Basic VNS scheme (BVNS) is
followed. The main parameters are:

• tmax which represents the time limit;

• kmax which represents the iteration limit for the inner loop (maximal k–neighborhood
of shake operation);

• x which is an additional boolean variable that serves as a flag: if x = ⊤, then
(r|Hp)HMPuPW is solved exactly during the local search (LS), otherwise the corre­
sponding linear programming relaxation (LPR) is solved (similarly to [32]).

The initial solution is obtained by an alternating heuristic (AH), as denoted on line 1
of Algorithm 2. Also, in the beginning, the flag variable x is set to ⊥, i.e., LPR should be
initially solved during LS.

Because there exists a possibility of being stuck in a local optimum, a probabilistic
shake procedure is utilized.

In order to disseminate the search, BVNS uses neighborhoods of increasing cardinality
to find better local optimum during LS. Suppose that s is an arbitrary solution and Nk

(k ∈ {kmin, . . . , kmax}) is a finite sequence of neighborhood structures. Then Nk(s) is
defined as the set of solutions in the kth neighborhood of s.

A solution s′′ is better than s if and only if s′′ yields a higher profit. The improvement
check at line 9 is always done for feasible solutions, i.e., we solved the corresponding
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Algorithm 2: BVNS — Basic Variable Neighborhood Search
Data: instance arguments, tmax, kmax

Result: a feasible leader’s solution s
1 s← AH
2 x← ⊥
3 while t ≤ tmax do
4 k ← 1
5 while k ≤ kmax do
6 s′ ← shake(s, x, k)
7 s′′ ← LS(s′, x, k)
8 k ← k + 1
9 if s′′ is better than s then
10 s← s′′

11 k ← 1
12 x← ⊥

13 x← ¬x

(r|Hp)HMPuPW and AM exactly. The flag x switches from⊤ to⊥ if an improvement is
observed (line 12 of Algorithm 2), or if k becomes greater than the limit value kmax (line
13 of Algorithm 2). Solving LPR reduces time and hopefully, relaying on the results in
[32], is a helpful in guiding the search process. It is easy to see that switching does not
affect the effectiveness.

Following the paradigm “less is more”, popularized by Mladenović [99], we formally
present the classic k–swap neighborhood that Algorithm 2 is based on:

swap(k,H) , {H ′ ⊂ N : |H ′|= |H| ∧ |H ′\H|= k}, (3.1)

where k ∈ N.

Definition 3.1. An ordered pair (H, H\K∪K ′) is called a k–swap move on a non–empty
subset H ⊂ N ifK ⊆ H , K ′ ⊂ N\H , K ∩K ′ = ∅, and |K|= |K ′|= k.

A k–swap move can be seen as a ternary operation. Applying it to a subset H ⊂
N,K ⊆ H , and K ′ ⊆ N\H results in a new subset H ′ ⊂ N , i.e., H ̸= H ′. In fact, there
are many ways to formally define/represent a k–swap move, all essentially equivalent.
Therefore, it is sensible to also assume and go along with the intuitive understanding of
this term.

Definition 3.2. We say that H and H ′, both subsets of N and |H ∩H ′|< |H|= |H ′|, are
in a k–swap relation, denoting it as H ◃▹k H ′, if there exist K ⊆ H and K ′ ⊆ H ′, such
that |K|= |K ′|= k,K ∩K ′ = ∅ and H ′ = H\K ∪K ′, i.e., H ′ can be obtained from H

by a k–swap move.

It is easy to see that this relation is irreflexive, symmetric, and non–transitive.

Definition 3.3. We call the finite sequence of ordered pairs (H,H ′), (H ′, H ′′), . . . ,

(H(m−1), H(m)) a sequence of k–swap moves (or a k–swap sequence) of length m if
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H ◃▹k H ′ ∧ H ′ ◃▹k H ′′ ∧ . . . ∧ H(m−1) ◃▹k H(m). H and H(m) are called the start
and end of this sequence, respectively.

Remark 3.7. In a k–swap sequence, non–subsequent subsets can be equal, i.e., H ̸= H ′

and H ′ ̸= H ′′ must hold, but it may happen that H = H ′′.

Definition 3.4. The minimal length k–swap sequence which has H as the start and H ′

as the end is called a k–swap distance between H and H ′ and it is denoted as dk(H,H ′).
Formally, we take that:

• dk(H,H) = 0;

• dk(H,H ′) =∞, when there exists no k–swap sequence between H and H ′.

Remark 3.8. It is easy to see that dk : P(N)2 → N0 has the following properties:

• it is positive between two different subsets and it is precisely zero when it maps a
subset to itself (identity of indiscernibles);

• it is symmetric;

• it satisfies the triangle inequality (sub­additivity).

In other words, dk is a metric and (N, dk) is a metric space.

Proposition 3.9. Let N be a non–empty set and |N |< 2p for some p ∈ N. Then, for each
pair of subsets H,H ′ ⊂ N , such that |H| = |H ′| = p and H ̸= H ′, there exists some
k ≤ ⌈p

2
⌉ so that dk(H,H ′) ≤ 2.

Proof. We know that H ∪ H ′ can be represented as a union of disjoint sets H ∪ H ′ =

K ⊔Kint ⊔K ′, whereK = H\H ′, K int = H ∩H ′, K ′ = H ′\H . From the proposition
conditions we realize that Kint ̸= ∅. If |K|≤ ⌈p

2
⌉, then dk(H,H ′) = 1. The rest of this

proof, i.e., the case |K|> ⌈p
2
⌉, is based on the parity of |K| (or equivalently |K ′|).

Assume that |K| is even. Let k = |K|
2
,K = K1⊔K2, |K1|= |K2|, K ′ = K ′

1⊔K ′
2, and

|K ′
1|= |K ′

2|. We can create a sequence of two k–swap moves (H, H̃), (H̃,H ′). For the
first move, we can take that H̃ = H\K1 ∪K ′

1, and for the second oneH ′ = H̃\K2 ∪K ′
2.

Assume that |K| is odd. Let k = ⌈ |K|
2
⌉, K = K1 ⊔ K2, |K1|= |K2|−1, K ′ =

K ′
1 ⊔ K ′

2, and |K ′
1|−1 = |K ′

2|. Again, we can create a sequence of two k–swap moves:
(H, H̃), (H̃,H ′). For the first move, we can take that H̃ = H\(K1 ∪ {h}) ∪K ′

1 and for
the second oneH ′ = H̃\K2 ∪ (K ′

2 ∪{h}), where h ∈ Kint. It is easy to see that these set
operations define the valid k–swap moves.

In both cases discussed above, kwas less than ⌈p
2
⌉ andwe composed k–swap sequences

from two moves, at most.
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Next, we address the case when N = 2p.

Proposition 3.10. Let N be a non–empty set and |N |= 2p for some even p ∈ N. Then,
for each pair of subsets H,H ′ ⊂ N , such that |H| = |H ′| = p and H ̸= H ′, there exists
some k ≤ p

2
so that dk(H,H ′) ≤ 2.

Proof. If |H ∪H ′|< 2p then we can apply the previous proposition. Therefore, we only
consider the case when H and H ′ are disjoint. Nevertheless, in this case, it is easy to see
that for k = p

2
we can create a proper k–swap sequence of length two at most.

Remark 3.11. Obviously, in the previous theorem k is also less then or equal to ⌈p
2
⌉.

Unfortunately, a similar statement to the previous one does not hold when p is odd.

Proposition 3.12. LetN be a non–empty set and |N |= 2p for some odd p ∈ N and p ≥ 3.
Then, for each pair of disjoint subsetsH,H ′ ⊂ N , such that |H|= |H ′|= p, their k–swap
distance dk(H,H ′) is greater than 2, for all k ≤ ⌈p

2
⌉.

Proof. Assume the opposite. In the first k–swap move, a two disjoint subsets K ⊂ H

andK ′ ⊂ N ′ of cardinality ⌈p
2
⌉ − 1 are swapped, i.e., we obtain two new disjoint subsets

H̃ = H\K ∪K ′ and H̃ ′ = H ′\K ′ ∪K. In the next and last move, because we assume
the opposite, we need to swap H\K (a subset of H̃) with H ′\K ′ (a subset of H̃ ′), which
have ⌈p

2
⌉ elements each. If k ≤ ⌈p

2
⌉ − 1, |H\K|= |H ′\K ′|≥ ⌈p

2
⌉, but we are allowed

only to swap k ≤ ⌈p
2
⌉− 1, which is insufficient. Otherwise, |H\K|= |H ′\K ′|= ⌈p

2
⌉− 1,

but we have to swap k ≤ ⌈p
2
⌉, which is too much.

For |N | larger than 2p, again, we prove the statement similar to Propositions 3.9 and
3.10.

Proposition 3.13. Let N be a non–empty set and |N |> 2p for some p ∈ N. Then, for
each pair of subsets H,H ′ ⊂ N , such that |H|= |H ′|= p and H ̸= H ′, there exists some
k ≤ ⌈p

2
⌉ so that dk(H,H ′) ≤ 2.

Proof. If |H ∪ H ′|< 2p, we can apply Proposition 3.9 on N ′ = H ∪ H ′. To prove the
statement for |H ∪H ′|= 2p, we focus our attention to the parity of p. For even p we can
apply Proposition 3.10, again on a N ′ = H ∪H ′. However, if p is odd, let k = ⌈p

2
⌉ and

H = K1 ⊔K2, |K1|= |K2|+1, H ′ = K ′
1 ⊔K ′

2, |K ′
1|+1 = |K ′

2|. Because |N |> 2p we
have at least one element i ∈ N that satisfies the following: i /∈ H and i /∈ H ′. Now,
we can easily create a sequence of two k–swap moves: (H, H̃), (H̃,H ′). For the first
move, we can take that H̃ = H\K1 ∪ (K ′

1 ∪ {i}). Regarding the second one, we have
that H ′ = H̃\(K2 ∪ {i}) ∪K ′

2.
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In a way, these propositions provide a theoretical ground for the utilization of k–swap
neighborhood in Algorithm 2. With shake and LS, we can make two consecutive k–swap
moves. If p is not odd, for kmax we can take ⌈p2⌉. Otherwise, we need to take into account
what Proposition 3.12 states.

In reality, we do not expect that the number of non–hub nodes is equal or smaller than
the hub backbone, i.e., usually, we have that p ≪ |N |. Therefore, in our Algorithm 2,
kmin = 1 (line 4) and kmax = ⌈p

2
⌉. However, if needed, it is easy to extend the set of

considered neighborhoods by allowing a p–swap move, although, (O3) suggests that we
could also ignore that. Another reason for kmax = ⌈p2⌉ as an upper counter bound lies in a
theoretical suggestion, which states that the currently inspected neighborhood should be
larger than the previous one. Of course, when p is odd, the last neighborhood does not
have to be greater than the previous one, but taking the floor instead of the ceiling would
result in missing to inspect the largest neighborhood.

3.3.1 Objective Function

The reason behind solving the LPR is that the evaluation of the leader’s objective function
is an NP–hard problem, according to Theorem 2.28. In situations like this, the objective
function estimation is a plausible substitute. A natural way to address that is to exercise
the corresponding LPR of the follower’s model. Differently, to approach in [32], the esti­
mation of leader’s profit is affected by the logit model and equilibrium pricing. Moreover,
if the follower establishes a different route for some O–D pair, the leader’s equilibrium
price changes accordingly.

Example 3.1. Assume that for an O–D pair (i, j) we have following fractional values for
the follower’s routes in the corresponding LPR: ςij,33 = 0.5 and ςij,44 = 0.5. The respec­
tive route costs are cFij,33 = 2 and cFij,44 = 1. At the same time, the leader’s network is
fixed and ρij,24 = 1, where the corresponding route cost is cLij,24 = 3. The price sensitivity
is Θ = 3.

The equilibrium price Eq. (2.28)–(2.29) yield that the corresponding prices are:

• q∗ij,33 ≈ 3.16 and t∗ij,24 ≈ 3.47;

• q∗ij,44 ≈ 2.89 and t∗ij,24 ≈ 3.40.

As we can see, for the same route i→2→ 4→j we have two different prices regarding
t∗ij,24. N

This example tells us that we can not directly use (2.3) to estimate the leader’s profit
by the LPR of (r|Hp)HMPuPW, i.e., we can not expect to have one leader’s price as
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the universal best response to different follower’s prices. It is not immediately clear what
would be a suitable substitute for evaluation. Here, the approach is to build it cumulatively.

After preprocessing, we know for eachO–Dpair (i, j) the equilibrium prices (tij,kl, qij,st)
of corresponding route pairs (ρij,kl, ζij,st). In order to build the substitute, we introduce a
function Tij,kl(s, t) : N

2 → R (for all i, j, k, l ∈ N )

Tij,kl(u, v) =

tij,kl, if qij,uv > 0

0, otherwise
(3.2)

If the relaxed follower’s solution has a partially established route ζ̃ij,uv, then the corre­
sponding equilibrium leader’s price should be taken into account. Constraint (2.14) stip­
ulates that

∑
u,v ζ̃ij,uv = 1. Therefore, our substitute for the leader’s equilibrium price is

given as
t̃ij,kl =

∑
u,v∈N

ζ̃ij,uvTij,kl(u, v). (3.3)

When we have the LPR solution, the effect of follower onto the corresponding leader’s
market share can be written as

γ̃ij =
∑
u,v∈N

ζ̃ij,uve
−Θqij,uv (3.4)

Finally, the estimation of leader’s profit is given as∑
i,j,k,l∈N

wij(t̃ij,kl − cij,kl)
1

1 + γ̃ijeΘt̃ij,kl
ρij,kl. (3.5)

We will use this expression in our local search algorithm to estimate the leader’s total
profit for neighboring solutions.

The downside of the estimation is that it can be misleading. For example, we could
inspect two leader’s networks s1 and s2 and the LPR–based estimation could favor s1,
while actually s2 is a better one. Therefore, if the improvement is not observed for some
time (e.g., during the whole inner loop), it is natural to switch from estimations to eval­
uations. On the other hand, the exact solution of a follower’s problem is quite costly, so
switching back should be done after a while. This mechanism is implemented on the line
13 of Algorithm 2.

The AM is always solved exactly, as it is unclear how its linear programming relax­
ation would provide any useful information. On the other hand, solving the AM can
significantly affect the algorithm execution time. In our design, the AM is solved only at
the end of AH and at the end of local search. This approach enables a push, from time to
time, towards the optimistic leader’s expectation and, at the same time, resources are not
vastly spent on the AM.
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3.3.2 Shaking

At each iteration, the VNS algorithm applies to the leader’s current solution s a proba­
bilistic procedure shake(s, x, k). This procedure replaces k randomly chosen hubs of the
leader by some other randomly chosen nodes, as presented in Algorithm 3.

Algorithm 3: shake
Data: s, x, k
Result: a (semi—)feasible solution s′

1 Hp ← a hub backbone of leader’s network in solution s
2 H ′

p ← a hub backbone from swap(k,Hp) selected at random
3 ρ′ ← allocate(H ′

p)
4 if ¬x then
5 solve the corresponding LPR of (r|H ′

p)HMPuPW
6 estimate the leader’s profit
7 else
8 solve exactly the corresponding (r|H ′

p)HMPuPW
9 compute the leader’s profit
10 compose a new (semi—)feasible solution s′

The allocation procedure allocate(H ′
p) is applied to the new set of leader’s hubsH ′

p to
compose a new leader’s solution network ρ′, according to the statement of Theorem 2.35.
At the end of shaking, the (r|Hp)HMPuPW of its corresponding LPR is solved for this
new leader’s network in order to compute or estimate the leader’s profit. The decision
about solving type is made on the basis of flag x value. Only for x = ⊤ the obtained
solution s′ will be feasible. It must be noted that for x = ⊥ the solution is not feasible,
nor semi–feasible.

The allocation is done following the indications about the preferred routes. Therefore,
for every O–D pair (i, j), the established routes are those that have the lowest cost. The
pseudo–code of procedure is given in Algorithm 4.

Remark 3.14. The decision about solving AM is shifted to LS procedure. This is why the
composed solution can be semi–feasible.

Algorithm 4: allocate
Data: H
Result: a hub and spoke network

1 for every O–D pair (i, j) do
2 establish the lowest cost route using hubs fromH

3.3.3 Local Search

The LS procedure is described in Algorithm 5. It is based on the swap neighborhood with
one major difference — the optimal policy for the well–known secretary problem is used
as a stopping rule. In the literature, this policy is also called a 1

e
–stopping rule or the
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1
e
–law of best choice. The reason for choosing this rule is based on the following three
observations:

• the best improvement strategy is time expensive for discrete bi–level optimization
problems;

• if the starting solution is of low quality (e.g., after the shake procedure), the first
improvement strategy could easily find a better solution, but still a low–quality one;

• if the local search starts with a near (locally) optimal solution, the first improvement
strategy will require almost an equivalent amount of time as the best improvement.

On the other hand, we can think about the hubs as rankable applicants in the secre­
tary problem. Thus, to maximize the probability of selecting the best applicant, i.e., the
best hub for swap, the 1

e
–law of best choice yields the optimal policy. This means that

only ⌈p
e
⌉ hubs, randomly chosen, should be considered for swapping with non–hub nodes.

Particularly, we have that if p ∈ {1, 2} then ⌈p
e
⌉ = 1, if p ∈ {3, 4, 5} then ⌈p

e
⌉ = 2, if

p ∈ {6, 7, 8} then ⌈p
e
⌉ = 3, and so on. The set of randomly chosen ⌈p

e
⌉ hubs is denoted

as O (line 2 in Algorithm 5). Obviously, we have that O ⊆ Hp.

Algorithm 5: LS — Local Search
Data: a (semi–)feasible solution s′, x, k
Result: a locally optimal feasible solution s′′

1 H ′
p ← the leader’s hub backbone in s′

2 O ← ⌈pe ⌉ randomly chosen hubs from H ′
p

3 for each H ′′
p ∈ coreswap(k,H ′

p, O) do
4 ρ′′ ← allocate(H ′′

p )
5 if ¬x then
6 solve the corresponding LPR of (r|H ′′

p )HMPuPW
7 estimate the leader’s profit for ρ′′

8 else
9 solve exactly the corresponding (r|H ′′

p )HMPuPW
10 compute the leader’s profit for ρ′′

11 ρ← the profit–best leader’s network among all that were examined
12 Hp ← the hub backbone of ρ
13 if ¬x then
14 solve exactly (r|Hp)HMPuPW
15 solve the corresponding АМ

It is easy to see thatO yields a specific subset of swap–neighborhood, which is, in fact,
the target neighborhood of our local search. In other words,O can be seen as a core of the
new neighborhood, which we formally define as

coreswap(k,H,O) , {H ′ ⊆ swap(k,H) | |H ′\O|= |H\O|+1}. (3.6)

After finding the best solution, according to the value of flag x, we check if the real
improvement is observed. This means that for leader’s network s̃ we solve the corre­
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sponding (r|H ′
p)HMPuPW exactly. Thus, as we already pointed out, in Algorithm 2 the

improvement check at line 9 is done for feasible solutions.

Remark 3.15. Obviously, one way to quickly improve the best solution time of BVNS is
to skip the calls for solving the corresponding AM in the LS procedure, especially if it
is unlikely that AM solutions will differ from the corresponding (r|Hp)HMPuPW ones.
However, this bald assumption does not reflect the true nature of our bi–level problem.
Our goal is not to thirstily design a solution approach that will be fast on some particular
instance sets. Instead, our goal is to design an algorithm that will be fast, systematic in
its search process, and which will address our bi­level problem’s nature in the right way.
Solving AM solely at the end of BVNS could be seen as a cosmetic instruction and not a
very useful circumvention of the issue with the follower’s behavior. In our opinion, it is
better from time to time to solve AM (i.e., in the LS phase), to check if the AM solution
differs from (r|Hp)HMPuPW one, while also being reasonably confident that the search
is pushed in the right direction.
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Chapter 4

Computational Experiments

«Нет области математики, как бы абстрактна
она ни была, которая однажды не смогла бы быть
применена к явлениям реального мира.»

Николай Иванович Лобачевский

The computational experiments are conducted using the instances generated from the
well–known CAB dataset, composed and published by O’Kelly in 1987 [103]. All math­
ematical programs were implemented in Python 3.8 (as a part of Anaconda package).
Gurobi Optimizer 9.0 was used as an integer linear programming solver, installed on
the Windows 10 operating system. The hardware platform for computation was Intel(R)
Core(TM) i7­7700 CPU @ 3.60GHz with 24.0 GiB of DDR4 RAM. All figures in this
work were produced using a Python package matplotlib [66]. The basic figure concerning
the USA map corresponding to CAB data set is given in the Appendix.

When it comes to the size of instance, three batches were considered: 15, 20, and 25

node instances. The discount factors χ and δ were set to 1, and α took values from the set
{0.2, 0.4, 0.6, 0.8}, usual for the CAB data set. The price sensitivity factor Θ took values
from a set {3, 6, 9, 12, 15}, which are modified values from [86]. The difference is that
the values are integer and equally separated in range from 3 to 15.

When it comes to the hub backbone size, the number of hubs for both competitors is
equal (i.e., r = p). The time limit tmax was set as:

• when |N |= 15, tmax = 45 minutes;

• when |N |= 20, tmax = 1.5 hours;

• when |N |= 25, tmax = 2 hours.

In total, 240 instances were examined. For every one of them, our VNS algorithm has
been executed 10 times, i.e., 2400 tests were performed. The result concerning running
times and objective values, are given in Tables C.1–C.3, in the Appendix.
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Besides this, a situation in which the leader ignores the follower is also addressed. Two
classic hub–location networks are considered as the leader’s strategic option: p–HMLP
and p–HCLP. For these networks, the VNS algorithm has not been executed. Only the
optimal follower’s solution was determined. Notably, 480 tests were performed.

The case r ̸= p is usually not presented in the research literature. Therefore, it is not
addressed in this thesis. However, for illustration purposes, some computational experi­
ments are done, and the results can be found in Harvard’s Dataverse repository [31].

In the sections that follow, we are going to investigate, in terms of descriptive statistics,
the results concerning the stability of VNS approach, comparison of VNS and AH solu­
tions, the effect of particular instance parameters, how AM affects the leader, and what
happens when the leader ignores the follower.

Remark 4.1. The result of computational experiments are not values of random variables.

4.1 Stability of VNS Solution Approach

We address the stability of VNS solution approach by two measures of dispersion on the
instance level: range and mean absolute deviation (MAD).

The summary of range data is given in Table 4.1. The first column (|N |) represents the
instance size — a batch. In the following three columns, the average range, the average
range percentage, and maximal range are provided, respectively. We can see that all three
measures increase gradually, as |N | gets larger, and the average range percentage indicates
good stability of our solution approach. Moreover, the ratio of average range percentages
for |N |= 25 and |N |= 20 is around 1.25, which is much less than the corresponding ratios
of average range (2.05) and maximal range (6.51).

Table 4.1: The stability of solution approach regarding range.

|N| avg.
range

avg. range
percentage (%)

max
range

15 1.23 0.003 50.47
20 11.97 0.009 215.21
25 24.56 0.012 1401.21

The summary of MAD data is given in Table 4.2. Here, we address the average of
mean absolute deviation (average MAD) on the level of instance and maximal absolute
deviation. The first column (|N |) represents the instance size, as in the previous table.
In the following three columns, the average MAD (avg. MAD), the percentage of this
average MAD compared to the smallest objective value returned by VNS for a given
instance batch (avg. MAD percentage (%)), and the maximal absolute deviation (max
abs. deviation), are presented, respectively. As we can see, although the maximal absolute
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deviation can be significant, the average MAD values are quite small. Also, we do not
have gradual increase of values, like in the case of range.

Taking all this into account, we can say that our VNS algorithm shows/exercises a good
stability.

Table 4.2: The stability of solution approach concerning MAD.

|N| avg.
MAD

avg. MAD
percentage (%)

max abs.
deviation

15 1.44 0.71 113.11
20 5.78 0.86 203.48
25 5.23 0.58 147.75

4.2 Comparison of AH and VNS Solutions

Because our VNS approach uses AH to obtain an initial solution, and AH can be used as a
standalone method, it is reasonable to compare the quality of AH solutions with the VNS
ones. For that, we need to calculate the differences in objective values between the VNS
and AH solutions. For every difference, its corresponding percentage of VNS obtained
value is computed. Because for every instance we did 10 runs of our VNS algorithm, the
best value among them is taken for the percentage computation.

The histogram of these values is presented on Fig. 4.1. As we can see, the histogram
is right–skewed.

Figure 4.1: The distribution of percentages concerning the difference of leader’s profits obtained by VNS
and AH, compared to the best VNS leader’s profit per instance. The number of bins is 10. The total amount
of data processed is 240.

As histogram can be biased, on Fig. 4.2 we can see an estimation of CDF, based on the
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empirical CDF (ECDF).

Figure 4.2: An estimation of CDF based on ECDF, regarding percentages of differences between leader’s
profits obtained by VNS and AH, compared to the best VNS leader’s profit per instance.

In most cases, the difference between AH and VNS solutions is negligible in terms of
the leader’s profit. Thus, it is sensible to say that the AH represents a reasonably good
heuristic approach for solving this problem, and a well–suited method for obtaining the
initial solution in the VNS algorithm. Furthermore, from Tables C.1­C.3 we can see that
the number of AH iterations per instance is not very large. The corresponding bar plot is
given in Fig. 4.3. Mod and median of AH iterations number is 3, while mean is 5.058.
The number of AH iterations is in range from 3 to 19, although it never happened that AH
ended after 17 iterations.

Remark 4.2. Three iterations means that the initial leader’s network was the best one that
AH has found.

4.3 Effect of Θ and α Parameters

This part of the computational investigation is focused on the effects of Θ, α and hub
backbone size to the following attributes of resulting solution:

• the leader’s profit;

• the ratio of leader’s and followers’ profit;

• the leader’s market share;

• the leader’s net profit margin (NPM).
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Figure 4.3: The bar plot of AH iterations.

The NPM is calculated in the following way

NPM =
objective value

revenue
× 100%. (4.1)

The revenue is computed simply by ignoring the transportation costs

revenue =
∑

i,j,k,l∈N

wijt
∗
ij,kl

ρij,kle
−Θt∗ij,kl∑

u,v∈N ρij,uve
−Θt∗ij,uv +

∑
u,v∈N ς∗ij,uve

−Θq∗ij,uv
. (4.2)

Except the leader’s profit, the rest of attributes should not be strongly affected by a instance
size. Therefore, for them, the data are aggregated according to the parameter values that
are being inspected.

The effects of price sensitivity parameter Θ and inter–hub transportation discount α
happen to be the most discernible. For some attributes, it is possible to observe almost a
solid pattern, in all three instance batches. On the other hand, no solid patterns have been
observed regarding the effect of hub backbone size.

Figure 4.4 is an illustrative example of observed patterns, i.e., how parameters Θ and
α affect the leader’s profit. For both sub–plots, the hub backbone size is taken to be 4.

On Fig. 4.5–4.9 we can see the depiction of how Θ affects the aforementioned at­
tributes. Fig. 4.5 presents three point plots corresponding to our instance batches. This
plot indicates that, in general, the leader can expect to make less profit ifΘ gets increased.
In a way, this indication and the curvatures are roughly predicted by Theorems 2.25 and
2.26. Also, as instances get larger, so to speak, the dispersion increases, too.

When it comes to the effect of Θ to the leader’s market share, the box plot on Fig. 4.6
suggests that increase ofΘ value results in lower expected leader’s market share. Also, the
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(a) (b)

Figure 4.4: The illustration of how parameters affect the leader’s profit: (a) Θ and (b) α. Blue (dotted), or­
ange (dash–dotted), and green (ordinary) lines correspond to instances of 15, 20, and 25 nodes, respectively.
The size of hub backbone is 4. For the left sub–figure α = 0.6, while for the right one Θ = 9.

Figure 4.5: The effect of Θ on the leader’s profit.

corresponding variability is increased. It can be seen that a lowΘ = 3means the leader’s
market share will be close to 50%. On the other hand, it looks like that increment of Θ
value leads to less predictable outcomes, i.e., the market share values are getting more
dispersed. Besides that, we can observe that the leader can not take more than slightly
above the 50% of market share, regardless of theΘ value. It seems that in this Stackelberg
competition, an increased price sensitivity implies a shift towards the non–conservative
behavior of customers. This observation is interesting, as it is basically a mathematical/
computational implication, not sociological, not economical, nor it is psychological.

On the other hand, by visual inspection of Fig. 4.7 and Fig. 4.8, it appears that for
higher Θ we can expect larger ratios of leader’s and follower’s profits and increased vari­
ability, i.e., increased sensitivity to price differences is affecting more “the maneuvering
space” left to the follower, compared with the leader. Interestingly, on some occasions,
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Figure 4.6: The effect of Θ on the leader’s market share.

Figure 4.7: The effect of Θ on the ratio of leader’s and follower’s profits.

the leader can profit even five timesmore than the follower. We could say that if customers
are highly sensitive to the price differences, then this situation is worse to the follower.

On Fig. 4.9 the observed pattern is not so solid, but it seems that the smaller NPM and
increased variability correspond to a higher Θ.

Fig. 4.10–4.13 depict the effect of α to the aforementioned attributes. In many cases,
increase in α has led to a smaller profit ratio. Fig. 4.10 presents three point plots corre­
sponding to our instance batches. It indicates that a larger α corresponds to a lower ex­
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Figure 4.8: The effect of Θ on the ratio of leader’s and follower’s profits when α = 0.6 and r = p = 4.
The blue (dotted), orange (dash–dotted), and green (ordinary) lines correspond to instances of 15, 20, and
25 nodes, respectively.

Figure 4.9: The effect of Θ on the leader’s NPM.

pected profit, in general. Also, as instances get larger, the “dispersion” of values around
the mean estimate increases for a given set of profits.

When it comes to the effect of α to the leader’s market share, we can see that violin
plot on Fig. 4.11 does not suggest any solid relationship. However, here, too, we can see
that the leader usually takes less than 50% of market share.

In a way, these observations about the market share are in contrast to the naïve in­
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Figure 4.10: The effect of α on the leader’s profit.

Figure 4.11: The effect of α on the leader’s market share.

terpretation of Theorem 2.34 and the other observations in the literature concerning the
competitive hub location (in which pricing is not taken into account). A possible explana­
tion for this could be that the leader focuses on gaining profit on high demand O–D pairs.
We expect that it is not always optimal for the follower to copycat the leader’s network.
Therefore, it could be that the leader is usually getting the larger cut on more important O–
D pairs, while the follower’s market share can, in general, be often larger than the leader’s
one as some kind of compensation.

By visual inspection of Fig. 4.12, it appears that the variability of profit ratios is smaller
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Figure 4.12: The violin plot depicting the effect of α on the ratio of leader’s and follower’s profits.

Figure 4.13: The effect of α on the leader’s NPM.

for larger α. Recall that when it comes to the leader’s profit the effects of α and Θ are
similar. Thus, we may assume that the parameters α and Θ have the opposite effects (up
to some degree) when it comes to the follower’s profit.

On Fig. 4.13 we can see quite a solid pattern. Interestingly, it seems that the smaller
α corresponds to the larger NPM. This observation is similar to what we have seen in the
case of Θ.
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4.4 Similarities Between Hub Backbones of Competitors

A similarity between leader’s and follower’s hub backbones can be measured with Jaccard
similarity index J : P(N)× P(N)→ [0, 1], computed as

J(Hp, Hr) =
|Hp ∩Hr|
|Hp ∪Hr|

, (4.3)

where 0 corresponds to no similarity at all (Hp ∩ Hr = ∅), and 1 represents the perfect
match (Hp = Hr).

The similarity results are presented in Table 4.3. In the first column, the instance
batches are given (|N |). The second column presents theMAD of Jaccard similarity index
values for a given instance batch (MAD of Jaccard). Minimal and maximal values of the
Jaccard similarity index are given in the columns ‘min Jaccard’ and ‘max Jaccard’, re­
spectively. In the last column, ‘avg. Jaccard’, Table 4.3 provides mean values of Jaccard
similarity indexes, per given instance batch. Although there are cases when the leader
and follower completely share the hub backbone, in general, that is not the case, as the
average Jaccard similarity index and corresponding MADs are small.

Table 4.3: The Jaccard similarity index values.

|N| MAD of
Jaccard

min
Jaccard

max
Jaccard

avg.
Jaccard

15 0.13 0.0 0.67 0.22
20 0.18 0.0 1.00 0.29
25 0.18 0.0 1.00 0.22

Another similaritymeasurewhichwewill consider, refers to thewell known Szymkiewicz–
Simpson overlapping coefficient SS : P(N)×P(N)→ [0, 1]. It is related to the Jaccard
similarity index and it can be computed as

SS(Hr, Hp) =
|Hr ∩Hp|

min(|Hr|, |Hp|)
(4.4)

where 0 corresponds to no overlapping at all (Hr ∩Hp = ∅), and 1 represents a situation
in which Hr ⊆ Hp or Hp ⊆ Hr.

Table 4.4: The Szymkiewicz–Simpson overlapping coefficient values.

|N| MAD of
SS

min
SS

max
SS

avg.
SS

15 0.19 0.0 0.80 0.36
20 0.23 0.0 1.00 0.40
25 0.25 0.0 1.00 0.34

The results of computing the Szymkiewicz–Simpson overlapping coefficient are pre­
sented in Table 4.4. This table is organized similarly as Table 4.3, except that instead
of Jaccard, we consider the value of SS function. Although there are cases when the
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leader’s and follower’s hub backbone are overlapping, in general, that is not the case, as
the average Szymkiewicz–Simpson overlapping coefficient and corresponding MAD are
small.

4.5 Effect of Solving Auxiliary Model

To address the effect of solving AM, each time the AM was solved, we have compared its
solution with (r|Hp)HMPuPW one. Table 4.5 presents, in percentages, how many times
the hub backbone was different (column ‘Different hub backbones’), and howmany times
the new solution affected the leader’s profit (column ‘Different leader’s profits’). |N |
represents the instance size, i.e., a batch.

Table 4.5: The effect of AM

|N | Different hub
backbones (%)

Different leader’s
profits (%)

15 0.25 0
20 0.25 0
25 2.75 0

It never happened that the leader’s profit was affected by the AM solution. A reason
for this could lie in the fact that the CAB data set does not have enough symmetries for
such a phenomenon to occur.

4.6 When Leader Ignores Follower

We can compare the results of our computational experiments, concerning (r|p)HCPuPW,
with the situations when the leader ignores the follower. For this comparison, naturally,
we take the corresponding solutions of two classical HLPs: p–HMLP and p–HCLP. Par­
ticularly, we are interested in finding the corresponding relative profit deviations

profit(r|p)HCPuPW − profitignore

profit(r|p)HCPuPW

(4.5)

where profit(r|p)HCPuPW represents the leader’s profit in (r|p)HCPuPW (obtained by
VNS algorithm) and profitignore represents the leader’s profit in situation in which she
ignores the competition. This formula assumes that the profit achieved by VNS approach
is always greater than the one when the leader ignores the follower’s best response.

Example 4.1. Consider an instance (|N |, α,Θ, r, p) = (25, 0.2, 15, 3, 3). If the leader sets
her hubs taking into account the follower’s best response, then her profit will be 3315.45.
However, if the leader sets her hubs according to the optimal solution of p–HMLP, then
her profit will be 3192.86 and she will lose 122.63 (around 3.7%). The optimal solution
of p–HCLP is even worse alternative. The leader’s profit in this situation is 568.67, i.e.,
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Figure 4.14: The leader’s hub location in case of (3|3)HCPuPW (red), 3–HMLP (blue), and 3–HCLP
(green), for CAB instance (|N |, α,Θ, r, p) = (25, 0.2, 15, 3, 3).

she will lose 2746.82 (around 82.8%). Fig. 4.14 presents the leader’s hub location in case
of these three solutions. N

Figure 4.15: The distribution of relative profit deviations when the leader chooses p–HMLP as her strategy.

On Fig. 4.15 and Fig. 4.16 we can see the histogram and estimated ECDF correspond­
ing to the relative profit deviations, when the leader chooses p–HMLP as her strategy.

Fig. 4.17 and Fig. 4.18 provide a comparison between p–HMLP and p–HCLP strate­
gies. As we can see, p–HMLP is much better option than p–HCLP, concerning profit
deviations. It could be that this difference is a consequence of objectives. The p–HMLP
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Figure 4.16: The estimation of ECDF for relative profit deviations when the leader chooses p–HMLP as her
strategy.

Figure 4.17: Two histograms of relative profit deviations when the leader chooses p–HMLP (orange) and
p–HCLP (blue) as her strategies.

minimizes the weighted sum of variable costs for all O–D pairs, while p–HCLPminimizes
only maximal corresponding weighted sum. The “narrow focus” of p–HCLP is not well
suited in competitive environment, as follower has a lot of maneuvering space for its best
response. Taking into account all O–D pairs puts the leader in better position.

From these plots we can realize that p–HMLP solution is a good choice to start with,
either in AH or VNS, in order to address (r|p)HCPuPW. As we can see the relative profit
deviation is reasonably small in most cases (Fig. 4.18).

The investigation of how parameters affect the relative profit deviation revealed that
the effects of α and hub backbone size do not have a solid pattern. However, it seems that
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Figure 4.18: Two estimations of ECDF corresponding to the relative profit deviations when the leader
chooses p–HMLP (orange) and p–HCLP (blue) as her strategy.

Figure 4.19: The point plots representing the effect of Θ on relative profit deviation. Different colors
correspond to different instance batches.

higher Θ means also a larger relative profit deviation. The results for Θ parameter are
shown as point plots for all three instance batches in Fig. 4.19.
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Chapter 5

Conclusion

You don’t have to be a mathematician to have a feel for
numbers.

John Nash

This study introduces an intermediate variant of hub location and pricing problem in
which competitors are sequentially entering the market (a leader–follower scenario), but
the pricing is resolved as in the Bertrand price game. Involving pricing is a more realistic
scenario than relying solely on costs and demands. The leader and the follower intend
to locate p and r hubs, respectively. The setting for hub location and route opening is
derived from the classic uncapacitated multiple allocation hub location problem. Multiple
allocations are allowed, and there are no limits on hub capacities. Only one route can
be established per O–D pair. The demand is perfectly inelastic and split between the
competitors in accordance with the logit model, which is also a more realistic assumption.
The objective for both companies is profit maximization, contrary to the usual viewpoint
in which the company is interested in minimizing its costs. The problem is called the (r|p)
hub–centroid problem under the price war. Compared to some other bi–level problems in
the literature, we need to define the behavior of follower accurately.

The existence of finite Bertrand–Nash price equilibrium for perfectly inelastic demand
is shown, which further implied the existence of an optimal solution to the problem itself,
i.e., the Stackelberg equilibrium. The new price equations are proposed for the follower,
and they could be seen as a game–theoretic generalization of the expression given by Bi­
tran and Ferrer [13]. Interestingly, the logit model and possibly different route costs yield
a Bertrand–Nash price equilibrium that is not a perfect competition. Besides the pricing
related statements, we have addressed the computational complexity of the leader’s and
follower’s problems. It is shown that the follower’s problem is NP–hard, but on the other
hand, the derived allocation problem is, in fact, polynomially solvable. As one could
assess, the leader’s problem is NP–hard, too.

In this study, we showed how the corresponding follower’s model could be transformed
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linearly. These reformulations allow the usage of commercial solvers in order to solve
them. Besides that, it is shown that the optimal routes are those with the lowest costs.

As a solution approach, the AH and VNS algorithms are proposed. Different to other
implementations, the initial solution is obtained by AH. Periodically, instead of evalu­
ations of the objective functions, the estimations are used. They are build–up using the
LPR solution of (r|Hp)HMPuPW. The 1

e
–law is used as a stopping rule in the local search.

Computational experiments showed that our VNS algorithm is stable, and theAH is a good
choice for generating the initial solution. Its cycle length is relatively small. In most cases,
the difference between the best objective values returned by VNS and AH is less than a
few percentages, compared to the VNS value.

The effects of price sensitivity parametersΘ andαwere the most discernible. Roughly,
the leader could expect to make less profit for larger Θ. A similar observation holds for
the discount parameter α. On the other hand, it looks like that Θ and α have opposite
effects (up to some degree) on the ratio of competitors’ profits. Particularly, for lager Θ
the ratio of leader’s and follower’s profits is also larger, while for lager α this ratio is
smaller. Besides these observations, it is improbable that the leader’s market share will
be larger than 50%. In most cases, it will be a little bit smaller than the follower’s cut. It
seems that in this Stackelberg competition, we can not expect from customers to manifest
a conservative behavior, in general. On the other hand, it looks like that the leader has the
first–mover advantage. It is rarely optimal for the follower to copycat the leader. Finally,
it is interesting that the leader’s profit was never affected by the auxiliary model’s solution
during the computational investigation.

An exciting new research direction is investigation of relationships concerning the
polynomial and approximation hierarchies, similarly as it was done in [80]. A different
line of research could address a robust variant of (r|p)HCPuPW.

The unique finite Bertrand–Nash price equilibrium indicates that it would be reason­
able to consider the cooperative price game with transferable utilities. In this setting, the
leader announces the strategy profile in terms of prices and has an incentive to find the
market position that would ensure the best credible threat strategy or the status quo point
on whether the side payment is allowed or not.

A new solution approach is another possible line of future research. It is a bald move
to dive into designing the exact solution method for the bi–level optimization problems
with non–linear objectives and where the follower’s behavior must be defined appropri­
ately. Even constructing useful heuristic approaches for this kind of problem is a decent
challenge.
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5.1 Contributions

The main results obtained during the conducted research in this thesis are:

• a new competitive hub location problem is introduced in which pricing is considered;

• the bi–level non–linear mixed–integer mathematical program is formulated as a
model for (r|p)HCPuPW;

• the existence of Bertrand–Nash price equilibrium is proved for fixed networks of
competitors;

• the existence of safe Stackelberg equilibria is proved;

• the new equilibrium price equations are provided;

• the extremal behavior of optimal objective values is analyzed;

• it is proved that follower’s problem is NP–hard;

• it is proved that the corresponding derived allocation problem is in class P;

• it is proved that the leader’s problem is NP–hard;

• it is proved that in this setting the optimal routes for a particular O–D pair are the
lowest–cost ones;

• it is shown how (r|Hp)HMPuPW can be formulated as a mix–integer linear program;

• it is shown how the auxiliary model can be reformulated as a mix–integer linear
program;

• it is shown how to implement AH as a solution approach for the leader;

• it is shown how to design a substitute for the leader’s objective function using the
LPR of follower’s model;

• a new coreswap neighborhood is introduced and defined;

• it is shown how to implement the VNS–based solution approach for the leader.

In total, one novel problem is introduced, for which a bi–level mathematical optimization
model is formulated, 12 theorems addressing this problem are formulated and proved,
accompanied with five propositions, one lemma, and nine corollaries. Besides that, two
reformulations are presented, and two solution approaches are designed.

As one can see from the results of conducted computational experiments, the proposed
combinatorial approach composed of theoretical and algorithmic contributions can be con­
sidered successful in addressing (r|p)HCPuPW. Considering all of the aforementioned,
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this research presents contributions to combinatorial optimization, location theory, and
matheuristics. Some results and presented ideas are already published in the proceedings
of international conferences and refereed international scientific journals. Other parts of
this research are already in the publication process.
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Appendix A

CAB Dataset

This data file has been contributed by M.E. O'Kelly

This is the 25 node data set that has been
used extensively with hub and spoke location models. It is
sometimes referred to as the CAB data set. Full references
to the source and prior results for these data can be found
in several previous paper, including

O'Kelly, M.E. 1987, "A quadratic integer program for the
location of interacting hub facilities", EJOR, 32, 393-404.

The list of cities in the 25 node data set is given below.

# 25 node hub data with unrounded costs #
## These new costs correspond to
O'Kelly, Bryan, Skorin-Kapov, Skorin-Kapov, O'Kelly paper
in Location Science volume 4(3), October 1996
# multiple and single assignment hub model #
# for use with mult.mod, single.mod or comb.mod #
# last revised 7 September 1994 #

The data show i,j, Wij and Cij for a 25x25 system. The
10, 15 and 20 node subsets are found by taking the top 10x10 15x15
and 20x20 submatrices

param: W C :=
1 1 0. 0
1 2 6469. 576.9631
1 3 7629. 946.4954
1 4 20036. 597.5972
1 5 4690. 373.8127
1 6 6194. 559.7673
1 7 11688. 709.0215
1 8 2243. 1208.328
1 9 8857. 603.6477
1 10 7248. 695.208
1 11 3559. 680.709
1 12 9221. 1936.572
1 13 10099. 332.4644
1 14 22866. 592.5679
1 15 3388. 908.7715
1 16 9986. 426.1877
1 17 46618. 756.1987
1 18 11639. 672.5906
1 19 1380. 1590.224
1 20 5261. 527.3008
1 21 5985. 483.4673
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1 22 6731. 2140.978
1 23 2704. 2184.402
1 24 12250. 408.1648
1 25 16132. 540.7388
2 1 6469. 576.9631
2 2 0. 0
2 3 12999. 369.5327
2 4 13692. 613.0386
2 5 3322. 429.1079
2 6 5576. 312.8831
2 7 3878. 1196.489
2 8 3202. 1502.14
2 9 6699. 405.8975
2 10 4198. 1241.961
2 11 2454. 960.3459
2 12 7975. 2318.076
2 13 1186. 786.5959
2 14 7443. 949.5669
2 15 1162. 938.7461
2 16 5105. 999.5005
2 17 24817. 179.2426
2 18 6532. 96.2744
2 19 806. 1999.584
2 20 8184. 210.7656
2 21 3896. 736.3755
2 22 7333. 2456.263
2 23 3719. 2339.509
2 24 2015. 844.1663
2 25 565. 36.4947
3 1 7629. 946.4954
3 2 12999. 369.5327
3 3 0. 0
3 4 35135. 858.3308
3 5 5956. 749.6018
3 6 14121. 556.0706
3 7 5951. 1541.273
3 8 5768. 1764.791
3 9 16578. 621.3306
3 10 4242. 1603.165
3 11 3365. 1250.962
3 12 22254. 2600.078
3 13 1841. 1137.335
3 14 23665. 1266.851
3 15 6517. 1124.778
3 16 3541. 1368.267
3 17 205088. 190.3157
3 18 37669. 274.3105
3 19 2885. 2299.429
3 20 13200. 494.2224
3 21 7116. 1043.484
3 22 17165. 2703.402
3 23 4284. 2503.828
3 24 8085. 1188.549
3 25 51895. 405.7886
4 1 20036. 597.5972
4 2 13692. 613.0386
4 3 35135. 858.3308
4 4 0. 0
4 5 19094. 255.0303
4 6 35119. 311.3071
4 7 21423. 790.1213
4 8 27342. 907.4331
4 9 51341. 237.0703
4 10 15826. 932.2173
4 11 28537. 406.3386
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4 12 65387. 1741.873
4 13 12980. 485.5564
4 14 44097. 1186.858
4 15 51525. 345.8738
4 16 14354. 830.3635
4 17 172895. 720.4687
4 18 37305. 675.3437
4 19 15418. 1447.104
4 20 26221. 403.8657
4 21 42303. 255.8823
4 22 35303. 1853.617
4 23 13618. 1733.132
4 24 17580. 1005.761
4 25 40708. 592.0278
5 1 4690. 373.8127
5 2 3322. 429.1079
5 3 5956. 749.6018
5 4 19094. 255.0303
5 5 0. 0
5 6 7284. 225.8954
5 7 3102. 794.1726
5 8 1562. 1080.374
5 9 7180. 238.944
5 10 1917. 879.5647
5 11 2253. 533.156
5 12 5951. 1889.528
5 13 1890. 402.3291
5 14 7097. 947.3188
5 15 2009. 598.541
5 16 1340. 700.4368
5 17 25303. 578.3286
5 18 6031. 512.3965
5 19 1041. 1570.725
5 20 4128. 255.6551
5 21 5452. 307.3289
5 22 3344. 2036.128
5 23 1067. 1967.256
5 24 4608. 775.239
5 25 7050. 399.2253
6 1 6194. 559.7673
6 2 5576. 312.8831
6 3 14121. 556.0706
6 4 35119. 311.3071
6 5 7284. 225.8954
6 6 0. 0
6 7 5023. 1009.689
6 8 3512. 1216.868
6 9 10419. 94.2588
6 10 3543. 1104.574
6 11 2752. 694.9153
6 12 14412. 2047.122
6 13 2043. 627.115
6 14 15642. 1084.5
6 15 5014. 626.1548
6 16 2016. 922.3181
6 17 62034. 409.3542
6 18 15385. 365.6853
6 19 2957. 1743.432
6 20 5035. 104.6478
6 21 7482. 491.1125
6 22 6758. 2164.855
6 23 2191. 2027.319
6 24 6599. 933.196
6 25 14181. 298.8486
7 1 11688. 709.0215
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7 2 3878. 1196.489
7 3 5951. 1541.273
7 4 21423. 790.1213
7 5 3102. 794.1726
7 6 5023. 1009.689
7 7 0. 0
7 8 11557. 663.8762
7 9 6479. 982.7378
7 10 34261. 221.422
7 11 10134. 447.8044
7 12 27350. 1249.763
7 13 6929. 411.1133
7 14 7961. 1097.608
7 15 4678. 851.8228
7 16 13511. 423.7053
7 17 29801. 1362.874
7 18 7549. 1288.966
7 19 5550. 895.0908
7 20 3089. 1049.266
7 21 9958. 537.6206
7 22 14110. 1493.843
7 23 4911. 1686.675
7 24 2722. 912.2104
7 25 10802. 1161.676
8 1 2243. 1208.328
8 2 3202. 1502.14
8 3 5768. 1764.791
8 4 27342. 907.4331
8 5 1562. 1080.374
8 6 3512. 1216.868
8 7 11557. 663.8762
8 8 0. 0
8 9 5615. 1143.791
8 10 7095. 874.5181
8 11 10753. 551.6299
8 12 30362. 841.624
8 13 1783. 880.0728
8 14 3437. 1714.651
8 15 8897. 694.0088
8 16 2509. 1066.563
8 17 23273. 1625.87
8 18 5160. 1574.822
8 19 8750. 593.4216
8 20 2583. 1301.511
8 21 7288. 780.9512
8 22 17481. 955.802
8 23 7930. 1024.566
8 24 1278. 1519.174
8 25 8447. 1475.479
9 1 8857. 603.6477
9 2 6699. 405.8975
9 3 16578. 621.3306
9 4 51341. 237.0703
9 5 7180. 238.944
9 6 10419. 94.2588
9 7 6479. 982.7378
9 8 5615. 1143.791
9 9 0. 0
9 10 4448. 1094.906
9 11 5076. 636.9045
9 12 22463. 1978.943
9 13 4783. 620.488
9 14 24609. 1151.868
9 15 9969. 535.0244
9 16 4224. 936.2502
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9 17 79945. 489.5645
9 18 20001. 453.2583
9 19 4291. 1682.489
9 20 10604. 198.9058
9 21 11925. 450.2585
9 22 13091. 2086.845
9 23 4172. 1936.304
9 24 12891. 992.3379
9 25 19500. 392.9045
10 1 7248. 695.208
10 2 4198. 1241.961
10 3 4242. 1603.165
10 4 15826. 932.2173
10 5 1917. 879.5647
10 6 3543. 1104.574
10 7 34261. 221.422
10 8 7095. 874.5181
10 9 4448. 1094.906
10 10 0. 0
10 11 4370. 642.2092
10 12 17267. 1375.635
10 13 3929. 477.459
10 14 8602. 963.7202
10 15 2753. 1046.119
10 16 20013. 305.3132
10 17 28080. 1417.072
10 18 5971. 1337.648
10 19 2131. 1017.332
10 20 3579. 1125.041
10 21 6809. 677.0608
10 22 8455. 1649.619
10 23 2868. 1891.166
10 24 2336. 795.2136
10 25 5616. 1205.747
11 1 3559. 680.709
11 2 2454. 960.3459
11 3 3365. 1250.962
11 4 28537. 406.3386
11 5 2253. 533.156
11 6 2752. 694.9153
11 7 10134. 447.8044
11 8 10753. 551.6299
11 9 5076. 636.9045
11 10 4370. 642.2092
11 11 0. 0
11 12 15287. 1358.213
11 13 3083. 378.5906
11 14 4092. 1236.192
11 15 7701. 405.0906
11 16 2809. 674.479
11 17 17291. 1096.712
11 18 4462. 1038.645
11 19 3239. 1048.539
11 20 2309. 768.1641
11 21 16003. 229.4867
11 22 8381. 1506.451
11 23 3033. 1503.794
11 24 1755. 1038.624
11 25 7266. 931.7148
12 1 9221. 1936.572
12 2 7975. 2318.076
12 3 22254. 2600.078
12 4 65387. 1741.873
12 5 5951. 1889.528
12 6 14412. 2047.122
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12 7 27350. 1249.763
12 8 30362. 841.624
12 9 22463. 1978.943
12 10 17267. 1375.635
12 11 15287. 1358.213
12 12 0. 0
12 13 5454. 1608.082
12 14 15011. 2335.816
12 15 17714. 1530.57
12 16 10037. 1661.778
12 17 105507. 2453.352
12 18 20040. 2396.794
12 19 31780. 358.3762
12 20 10822. 2125.512
12 21 16450. 1582.369
12 22 92083. 361.5388
12 23 32908. 986.8149
12 24 3865. 2157.517
12 25 24583. 2288.748
13 1 10099. 332.4644
13 2 1186. 786.5959
13 3 1841. 1137.335
13 4 12980. 485.5564
13 5 1890. 402.3291
13 6 2043. 627.115
13 7 6929. 411.1133
13 8 1783. 880.0728
13 9 4783. 620.488
13 10 3929. 477.459
13 11 3083. 378.5906
13 12 5454. 1608.082
13 13 0. 0
13 14 3251. 858.251
13 15 1126. 700.8213
13 16 5926. 348.2725
13 17 10653. 955.6191
13 18 3062. 879.9795
13 19 759. 1265.573
13 20 1255. 651.1179
13 21 6173. 254.9977
13 22 2974. 1808.52
13 23 1056. 1872.696
13 24 1504. 660.5173
13 25 4588. 751.4614
14 1 22866. 592.5679
14 2 7443. 949.5669
14 3 23665. 1266.851
14 4 44097. 1186.858
14 5 7097. 947.3188
14 6 15642. 1084.5
14 7 7961. 1097.608
14 8 3437. 1714.651
14 9 24609. 1151.868
14 10 8602. 963.7202
14 11 4092. 1236.192
14 12 15011. 2335.816
14 13 3251. 858.251
14 14 0. 0
14 15 5550. 1500.774
14 16 9473. 675.7505
14 17 169397. 1098.282
14 18 25073. 1021.611
14 19 1170. 1977.613
14 20 14272. 1015.165
14 21 8543. 1065.599
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14 22 8064. 2591.447
14 23 1840. 2725.79
14 24 20618. 197.8015
14 25 20937. 923.2229
15 1 3388. 908.7715
15 2 1162. 938.7461
15 3 6517. 1124.778
15 4 51525. 345.8738
15 5 2009. 598.541
15 6 5014. 626.1548
15 7 4678. 851.8228
15 8 8897. 694.0088
15 9 9969. 535.0244
15 10 2753. 1046.119
15 11 7701. 405.0906
15 12 17714. 1530.57
15 13 1126. 700.8213
15 14 5550. 1500.774
15 15 0. 0
15 16 2152. 1039.77
15 17 26816. 1018.399
15 18 6931. 987.8645
15 19 4947. 1280.737
15 20 2676. 728.3743
15 21 8033. 450.3982
15 22 12692. 1589.835
15 23 6157. 1401.321
15 24 3065. 1311.21
15 25 12044. 922.3145
16 1 9986. 426.1877
16 2 5105. 999.5005
16 3 3541. 1368.267
16 4 14354. 830.3635
16 5 1340. 700.4368
16 6 2016. 922.3181
16 7 13511. 423.7053
16 8 2509. 1066.563
16 9 4224. 936.2502
16 10 20013. 305.3132
16 11 2809. 674.479
16 12 10037. 1661.778
16 13 5926. 348.2725
16 14 9473. 675.7505
16 15 2152. 1039.77
16 16 0. 0
16 17 21806. 1178.439
16 18 4519. 1095.657
16 19 886. 1304.043
16 20 1742. 918.5615
16 21 4782. 601.9917
16 22 6453. 1916.578
16 23 2022. 2090.089
16 24 3546. 496.4224
16 25 5065. 963.0435
17 1 46618. 756.1987
17 2 24817. 179.2426
17 3 205088. 190.3157
17 4 172895. 720.4687
17 5 25303. 578.3286
17 6 62034. 409.3542
17 7 29801. 1362.874
17 8 23273. 1625.87
17 9 79945. 489.5645
17 10 28080. 1417.072
17 11 17291. 1096.712
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17 12 105507. 2453.352
17 13 10653. 955.6191
17 14 169397. 1098.282
17 15 26816. 1018.399
17 16 21806. 1178.439
17 17 0. 0
17 18 9040. 84.3365
17 19 11139. 2143.565
17 20 63153. 328.7515
17 21 34092. 880.5469
17 22 70935. 2574.082
17 23 14957. 2415.489
17 24 28398. 1008.2
17 25 166694. 215.561
18 1 11639. 672.5906
18 2 6532. 96.2744
18 3 37669. 274.3105
18 4 37305. 675.3437
18 5 6031. 512.3965
18 6 15385. 365.6853
18 7 7549. 1288.966
18 8 5160. 1574.822
18 9 20001. 453.2583
18 10 5971. 1337.648
18 11 4462. 1038.645
18 12 20040. 2396.794
18 13 3062. 879.9795
18 14 25073. 1021.611
18 15 6931. 987.8645
18 16 4519. 1095.657
18 17 9040. 84.3365
18 18 0. 0
18 19 2802. 2082.316
18 20 30224. 273.4106
18 21 7982. 818.1228
18 22 14964. 2526.562
18 23 4589. 2388.689
18 24 6227. 926.6267
18 25 12359. 132.7684
19 1 1380. 1590.224
19 2 806. 1999.584
19 3 2885. 2299.429
19 4 15418. 1447.104
19 5 1041. 1570.725
19 6 2957. 1743.432
19 7 5550. 895.0908
19 8 8750. 593.4216
19 9 4291. 1682.489
19 10 2131. 1017.332
19 11 3239. 1048.539
19 12 31780. 358.3762
19 13 759. 1265.573
19 14 1170. 1977.613
19 15 4947. 1280.737
19 16 886. 1304.043
19 17 11139. 2143.565
19 18 2802. 2082.316
19 19 0. 0
19 20 1869. 1814.83
19 21 3716. 1264.193
19 22 11510. 661.6543
19 23 3519. 1129.327
19 24 569. 1800.098
19 25 3520. 1968.689
20 1 5261. 527.3008
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20 2 8184. 210.7656
20 3 13200. 494.2224
20 4 26221. 403.8657
20 5 4128. 255.6551
20 6 5035. 104.6478
20 7 3089. 1049.266
20 8 2583. 1301.511
20 9 10604. 198.9058
20 10 3579. 1125.041
20 11 2309. 768.1641
20 12 10822. 2125.512
20 13 1255. 651.1179
20 14 14272. 1015.165
20 15 2676. 728.3743
20 16 1742. 918.5615
20 17 63153. 328.7515
20 18 30224. 273.4106
20 19 1869. 1814.83
20 20 0. 0
20 21 5020. 552.4229
20 22 6610. 2253.211
20 23 2139. 2128.828
20 24 5431. 875.2542
20 25 13541. 194.5945
21 1 5985. 483.4673
21 2 3896. 736.3755
21 3 7116. 1043.484
21 4 42303. 255.8823
21 5 5452. 307.3289
21 6 7482. 491.1125
21 7 9958. 537.6206
21 8 7288. 780.9512
21 9 11925. 450.2585
21 10 6809. 677.0608
21 11 16003. 229.4867
21 12 16450. 1582.369
21 13 6173. 254.9977
21 14 8543. 1065.599
21 15 8033. 450.3982
21 16 4782. 601.9917
21 17 34092. 880.5469
21 18 7982. 818.1228
21 19 3716. 1264.193
21 20 5020. 552.4229
21 21 0. 0
21 22 9942. 1735.937
21 23 3276. 1712.136
21 24 3820. 871.6396
21 25 11799. 706.5024
22 1 6731. 2140.978
22 2 7333. 2456.263
22 3 17165. 2703.402
22 4 35303. 1853.617
22 5 3344. 2036.128
22 6 6758. 2164.855
22 7 14110. 1493.843
22 8 17481. 955.802
22 9 13091. 2086.845
22 10 8455. 1649.619
22 11 8381. 1506.451
22 12 92083. 361.5388
22 13 2974. 1808.52
22 14 8064. 2591.447
22 15 12692. 1589.835
22 16 6453. 1916.578
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22 17 70935. 2574.082
22 18 14964. 2526.562
22 19 11510. 661.6543
22 20 6610. 2253.211
22 21 9942. 1735.937
22 22 0. 0
22 23 35285. 694.9363
22 24 2566. 2404.839
22 25 19926. 2430.269
23 1 2704. 2184.402
23 2 3719. 2339.509
23 3 4284. 2503.828
23 4 13618. 1733.132
23 5 1067. 1967.256
23 6 2191. 2027.319
23 7 4911. 1686.675
23 8 7930. 1024.566
23 9 4172. 1936.304
23 10 2868. 1891.166
23 11 3033. 1503.794
23 12 32908. 986.8149
23 13 1056. 1872.696
23 14 1840. 2725.79
23 15 6157. 1401.321
23 16 2022. 2090.089
23 17 14957. 2415.489
23 18 4589. 2388.689
23 19 3519. 1129.327
23 20 2139. 2128.828
23 21 3276. 1712.136
23 22 35285. 694.9363
23 23 0. 0
23 24 940. 2528.479
23 25 4951. 2321.873
24 1 12250. 408.1648
24 2 2015. 844.1663
24 3 8085. 1188.549
24 4 17580. 1005.761
24 5 4608. 775.239
24 6 6599. 933.196
24 7 2722. 912.2104
24 8 1278. 1519.174
24 9 12891. 992.3379
24 10 2336. 795.2136
24 11 1755. 1038.624
24 12 3865. 2157.517
24 13 1504. 660.5173
24 14 20618. 197.8015
24 15 3065. 1311.21
24 16 3546. 496.4224
24 17 28398. 1008.2
24 18 6227. 926.6267
24 19 569. 1800.098
24 20 5431. 875.2542
24 21 3820. 871.6396
24 22 2566. 2404.839
24 23 940. 2528.479
24 24 0. 0
24 25 6237. 813.5513
25 1 16132. 540.7388
25 2 565. 36.4947
25 3 51895. 405.7886
25 4 40708. 592.0278
25 5 7050. 399.2253
25 6 14181. 298.8486
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25 7 10802. 1161.676
25 8 8447. 1475.479
25 9 19500. 392.9045
25 10 5616. 1205.747
25 11 7266. 931.7148
25 12 24583. 2288.748
25 13 4588. 751.4614
25 14 20937. 923.2229
25 15 12044. 922.3145
25 16 5065. 963.0435
25 17 166694. 215.561
25 18 12359. 132.7684
25 19 3520. 1968.689
25 20 13541. 194.5945
25 21 11799. 706.5024
25 22 19926. 2430.269
25 23 4951. 2321.873
25 24 6237. 813.5513
25 25 0. 0
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Appendix B

USA Map for CAB Dataset

Figure 2.1: The USA map for CAB dataset. Cities are denoted with numbers, as in [103].
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Appendix C

Results of Computational Experiments

Tables C.1, C.2, and C.3 present the computational results concerning the profit values,
running times and number of AH iterations. In the first three columns, the instance values
for the inter–hub discount factor α, sensitivity parameter Θ, and hub backbone size (‘#
of hubs’) are given, respectively. For every instance, the VNS algorithm was executed
for 10 times. The best leader’s profit value found among all 10 executions is given in the
column ‘best profit’. Themean value of best leader’s profits regarding these 10 executions
is presented in the column ‘avg. profit’. Similarly, the mean value of times (in seconds)
for which the VNS has found best solution is given in the column ‘avg. best time (s)’.
The mean total time (in seconds) of VNS executions is presented in the column ‘avg. run
time (s)’. In the last column ‘# of AH iterations’, the number of AH iterations is given.

Table C.1: Computational results when |N |= 15.

α Θ
# of
hubs

best
profit

avg.
profit

avg. best
time (s)

avg. run
time (s)

# of AH
iterations

0.2 3 2 1008.68 1008.68 7.37 2701.43 3
3 1021.98 1021.98 415.92 2725.23 3
4 946.24 946.24 148.21 2719.89 3
5 804.17 804.17 7.39 2713.04 3

6 2 837.28 837.28 11.81 2706.55 3
3 756.67 756.67 906.91 2734.38 9
4 608.39 608.39 1174.16 2723.04 7
5 509.41 509.41 1041.85 2733.93 3

9 2 739.01 739.01 19.95 2707.16 9
3 614.04 614.04 534.24 2737.11 9
4 525.31 525.31 1752.32 2726.73 7
5 386.17 379.48 1361.94 2707.04 5

12 2 722.07 722.07 23.02.20 2706.96 9
3 744.10 744.10 1037.82 2738.47 7
4 519.34 519.34 1516.31 2724.66 9
5 395.57 395.57 1472.95 2728.43 5

15 2 717.93 717.93 178.18 2721.96 5
3 740.95 740.95 446.70 2747.28 9
4 539.74 523.70 1491.13 2723.84 11
5 415.79 409.39 1360.25 2717.48 9

0.4 3 2 911.91 911.91 7.50 2708.19 3
3 918.66 918.66 206.73 2714.38 3
4 848.07 848.07 7.45 2719.31 3
5 805.08 805.08 7.57 2726.63 3

6 2 658.67 658.67 7.54 2710.47 3
3 623.00 623.00 684.99 2734.70 3
4 582.57 582.57 135.58 2718.42 3
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5 520.59 520.59 654.52 2723.08 3
9 2 614.20 614.20 121.16 2708.28 3

3 518.68 518.68 623.30 2739.68 3
4 491.94 491.94 290.89 2716.48 7
5 367.19 367.19 859.72 2719.83 3

12 2 590.33 590.33 19.65 2704.23 11
3 640.46 640.46 787.79 2724.73 9
4 454.28 454.28 1083.14 2738.21 9
5 316.00 316.00 1254.92 2738.69 5

15 2 581.80 581.80 31.19 2707.61 15
3 633.64 633.64 1048.57 2732.25 9
4 435.92 435.92 191.16 2740.76 9
5 395.12 395.12 1342.81 2731.55 7

0.6 3 2 867.31 867.31 7.49 2704.90 3
3 872.17 872.17 391.38 2725.24 3
4 822.93 822.93 7.49 2718.95 3
5 817.29 817.29 7.75 2711.54 3

6 2 601.80 601.80 7.41 2707.23 3
3 537.99 537.99 515.77 2723.46 3
4 556.87 556.87 883.00 2730.12 3
5 470.08 470.08 585.92 2721.22 3

9 2 509.74 509.74 239.10 2705.76 3
3 444.99 444.99 770.30 2721.83 3
4 457.36 457.36 1078.24 2721.28 3
5 378.45 378.45 374.47 2713.49 3

12 2 479.07 479.07 208.37 2707.65 7
3 441.00 441.00 798.56 2715.34 3
4 414.76 414.76 17.38 2726.97 9
5 340.60 340.60 851.81 2719.16 3

15 2 466.14 466.14 140.00 2703.34 7
3 425.65 425.65 253.93 2741.01 3
4 393.23 393.23 19.38 2726.14 9
5 302.05 302.05 1003.34 2721.18 11

0.8 3 2 872.62 872.62 7.64 2706.18 3
3 837.81 837.81 7.33 2723.70 3
4 811.85 811.85 7.29 2728.31 3
5 804.65 804.65 7.25 2729.18 3

6 2 537.99 537.99 151.82 2708.15 7
3 561.92 561.92 100.55 2714.95 3
4 513.44 513.44 783.51 2732.28 3
5 420.14 420.14 7.47 2714.43 3

9 2 456.01 456.01 133.33 2707.30 7
3 469.15 469.15 256.63 2734.88 3
4 428.22 428.22 7.82 2734.78 3
5 298.70 298.70 403.05 2716.90 3

12 2 425.58 425.58 54.11 2707.26 5
3 429.00 429.00 170.97 2741.23 5
4 380.06 380.06 13.16 2719.05 7
5 246.74 246.74 1370.75 2726.22 3

15 2 411.46 411.46 177.88 2705.13 5
3 378.99 378.99 1026.28 2727.48 7
4 355.46 355.46 371.41 2708.87 7
5 236.09 236.09 1138.23 2729.96 3

Table C.2: Computational results when |N |= 20.

α Θ
# of
hubs

best
profit

avg.
profit

avg. best
time (s)

avg. run
time (s)

# of AH
iterations

0.2 3 2 2360.79 2360.79 28.35 5574.83 3
3 2607.31 2607.31 26.27 5713.41 3
4 2302.71 2302.71 2204.03 5778.54 5
5 1918.20 1918.20 24.32 5711.27 3

6 2 1533.65 1533.65 65.63 5681.98 7
3 1909.06 1909.06 1298.85 5797.70 7
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4 1526.17 1526.17 30.91 5835.92 5
5 1323.32 1323.32 30.30 5785.08 3

9 2 1482.13 1482.13 649.37 5593.85 3
3 1722.73 1713.98 3972.49 5818.33 9
4 1323.47 1323.47 885.26 5730.39 3
5 1100.93 1095.77 3691.11 8324.00 7

12 2 1463.47 1463.47 1553.89 5659.00 3
3 1548.44 1548.44 1703.04 5961.20 9
4 1370.97 1370.97 93.64 5661.87 11
5 1200.88 1044.48 2351.25 6437.43 7

15 2 1452.65 1452.65 1978.44 5594.24 3
3 1748.54 1708.35 2553.09 6362.46 9
4 1843.25 1683.40 3546.66 6142.89 9
5 1177.65 1088.88 4590.68 7250.63 11

0.4 3 2 2310.87 2310.87 29.05.20 5684.43 3
3 2347.05 2347.05 1722.20 5820.91 3
4 2127.53 2126.53 1854.67 5935.58 5
5 1918.20 1918.20 24.56 5816.71 3

6 2 1347.99 1347.99 354.88 5558.66 3
3 1672.47 1672.47 814.42 5792.69 3
4 1385.23 1385.23 25.85 5848.23 3
5 1262.84 1262.84 33.45 5885.28 3

9 2 1210.84 1210.84 354.85 5546.78 3
3 1488.36 1452.25 1858.32 5774.65 9
4 1160.27 1160.27 42.89 5909.29 7
5 1002.35 1002.35 25.90 5918.69 3

12 2 1215.26 1215.26 1193.83 5698.25 3
3 1384.41 1384.41 2682.93 5792.69 9
4 1092.21 1092.21 62.61 5639.06 7
5 888.46 887.97 817.80 5916.16 3

15 2 1287.87 1287.87 735.55 5685.90 3
3 1280.06 1280.06 1438.25 5744.66 7
4 1300.01 1244.81 2318.94 5789.43 19
5 838.46 813.31 1695.22 5980.33 13

0.6 3 2 2192.65 2192.65 251.21 5482.96 3
3 2096.33 2096.33 25.30 5690.49 3
4 2067.53 2067.53 823.65 5781.63 3
5 1918.20 1918.20 24.16 5869.63 3

6 2 1227.69 1227.69 836.33 5637.18 3
3 1235.50 1235.50 26.10 5701.78 3
4 1271.09 1271.09 950.01 5858.88 3
5 965.33 964.74 2880.93 6072.91 3

9 2 1055.38 1055.38 1953.66 5562.54 3
3 1291.64 1291.64 2029.81 5878.83 7
4 1023.25 1023.25 1620.63 5932.41 3
5 874.88 849.52 1193.54 5932.39 3

12 2 980.31 980.31 751.74 5603.32 3
3 1099.46 1099.46 48.54 5864.22 9
4 914.63 914.63 2372.54 5814.55 3
5 816.40 816.40 2577.21 7101.87 3

15 2 963.16 963.16 262.77 5567.88 3
3 1059.03 1059.03 630.02 5741.19 7
4 856.47 856.47 47.23 5824.35 9
5 755.78 750.82 2153.71 6035.49 3

0.8 3 2 2150.07 2150.07 2210.31 5630.77 5
3 2025.62 2025.62 24.48 5581.20 3
4 1992.32 1992.32 24.08 5708.42 3
5 1918.20 1918.20 24.84 5761.72 3

6 2 1215.81 1215.81 513.18 5528.42 3
3 1136.95 1136.95 625.12 5520.09 3
4 1154.81 1141.63 2787.33 5516.87 3
5 998.10 998.10 23.96 5523.76 3

9 2 990.46 990.46 363.41 5567.28 5
3 929.04 929.04 1768.25 5738.89 3
4 879.91 879.91 967.83 5941.36 3
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5 738.81 735.32 1899.85 5724.01 3
12 2 900.90 900.90 270.99 5478.82 5

3 951.20 951.20 1338.27 5792.23 5
4 772.04 772.04 2250.44 5950.53 3
5 741.38 737.78 1824.40 6202.32 3

15 2 857.08 857.08 452.63 5529.52 5
3 882.82 882.82 51.07 5689.52 9
4 701.26 701.26 2336.32 5985.80 3
5 671.45 669.43 1461.02 7038.01 3

Table C.3: Computational results when |N |= 25.

α Θ
# of
hubs

best
profit

avg.
profit

avg. best
time (s)

avg. run
time (s)

# of AH
iterations

0.2 3 2 3964.75 3964.75 76.62 7425.40 3
3 2897.21 2897.21 73.16 7690.15 3
4 2987.53 2987.53 76.88 8670.82 5
5 2846.67 2846.67 62.75 18610.56 3

6 2 3211.90 3211.90 98.53 7931.10 3
3 1830.48 1830.48 3001.18 8262.13 3
4 1856.14 1856.14 5518.06 8823.74 5
5 1885.94 1885.94 106.68 18020.28 3

9 2 3372.23 3372.23 163.67 7432.44 7
3 3416.31 3416.31 196.10 9009.26 3
4 1492.47 1492.47 4301.89 8558.04 7
5 1585.74 1585.12 4722.33 17809.18 7

12 2 3335.27 3335.27 309.79 8364.31 7
3 3350.35 3350.35 298.74 10168.58 3
4 1542.38 1542.38 5262.72 11399.40 7
5 1426.69 1426.69 262.23 18302.15 13

15 2 3326.70 3326.70 507.14 9483.55 9
3 3315.50 3315.50 519.40 11463.31 11
4 1570.85 1534.29 8830.86 13089.41 7
5 1389.04 1365.94 1350.31 19418.49 11

0.4 3 2 3744.82 3744.82 77.49 7832.25 3
3 2917.84 2917.84 71.04 7810.14 3
4 3072.10 3072.10 76.70 8717.19 5
5 2846.67 2846.67 61.99 17570.74 3

6 2 2877.37 2877.37 86.85 7593.11 3
3 1701.17 1701.17 2118.08 9333.17 3
4 1784.25 1784.25 4284.25 10238.06 3
5 1772.93 1772.93 96.12 18799.29 3

9 2 2917.80 2917.80 1457.19 7734.01 7
3 1420.49 1420.49 2271.12 7909.20 3
4 1410.40 1410.40 6143.86 12128.14 3
5 1398.26 1394.73 5917.25 17787.95 3

12 2 2853.64 2853.64 1215.19 7976.16 7
3 1314.40 1314.40 4602.14 8660.29 3
4 1372.37 1310.73 5306.78 9564.79 7
5 1248.94 1242.72 11761.19 20554.21 11

15 2 2850.34 2850.34 219.19 7506.48 5
3 2677.09 1556.12 4093.62 10413.41 3
4 1348.53 1348.53 8719.52 11920.27 7
5 1171.55 1169.06 27105.49 45130.45 9

0.6 3 2 3581.94 3581.94 71.81 7294.51 3
3 2918.16 2918.16 3504.92 8935.26 3
4 2969.62 2969.62 80.61 9073.43 5
5 2856.18 2856.18 66.36 19255.00 3

6 2 2632.74 2632.74 145.30 7489.43 7
3 1601.90 1601.90 78.07 7979.25 3
4 1643.08 1643.08 74.47 9037.13 5
5 1678.25 1678.25 3861.36 21822.10 3

9 2 2378.74 2378.74 1411.26 7711.97 7
3 1279.68 1279.68 5773.61 8339.32 3
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4 1246.93 1246.93 4350.02 9618.32 5
5 1271.00 1271.00 93.28 19816.06 3

12 2 2516.95 2516.95 3432.92 8098.90 9
3 1179.43 1179.43 4597.74 9033.84 3
4 1090.86 1074.97 6547.52 11024.49 7
5 1100.48 1087.48 661.21 20273.23 7

15 2 2480.57 2480.57 3737.54 8054.97 9
3 1127.98 1127.98 5428.63 8545.31 3
4 1086.14 1059.50 9765.78 13832.73 7
5 995.43 981.60 19112.10 39044.33 9

0.8 3 2 3470.91 3470.91 70.99 8371.32 3
3 2893.48 2893.48 69.80 7969.14 3
4 2933.44 2933.44 65.59 8914.90 3
5 2885.94 2878.06 1810.40 19832.70 5

6 2 2499.39 2499.39 1203.62 7408.57 5
3 1564.99 1564.99 70.92 8137.43 3
4 1566.54 1566.54 69.11 9129.86 3
5 1642.03 1642.03 2516.96 19991.80 5

9 2 2222.45 2222.45 2484.28 7464.88 9
3 1221.78 1221.78 5355.40 8116.63 3
4 1164.71 1164.71 4971.40 10462.57 3
5 1226.53 1220.94 295.55 20113.28 5

12 2 2113.27 2113.27 1826.9 7395.91 9
3 1073.13 1073.13 5335.07 8914.37 3
4 991.87 987.23 7153.58 10365.20 3
5 1044.61 1044.61 10090.73 28191.64 5

15 2 2061.04 2061.04 1553.67 7487.22 9
3 1012.37 1012.37 3522.70 8409.51 3
4 902.61 898.62 3526.68 9893.87 3
5 1015.85 987.20 28373.89 44492.36 7

Table C.4: A leader’s profit when she ignores the follower’s reaction.

|N | α Θ
# of
hubs

Profit achieved
by p­HMLP

Profit achieved
by p­HCLP

2 1008.68 643.47
3 916.42 535.67
4 907.36 548.133

5 804.17 495.88
2 837.28 351.21
3 530.81 272.70
4 523.34 276.356

5 493.05 193.71
2 710.04 281.97
3 437.17 165.73
4 421.36 221.259

5 305.13 127.63
2 685.52 255.36
3 449.09 133.73
4 377.42 202.3212

5 249.64 104.18
2 675.37 242.72
3 430.24 121.76
4 372.61 194.00

0.2

15

5 235.90 93.57
2 911.91 669.80
3 902.25 536.78
4 848.07 517.933

5 805.08 610.73
2 658.67 368.13
3 520.59 278.39
4 484.38 208.516

5 462.93 302.42
2 584.22 298.14
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3 421.45 223.85
4 375.60 136.509

5 351.32 202.12
2 570.95 271.78
3 378.34 203.90
4 326.80 108.9712

5 300.65 166.77
2 555.33 334.46
3 412.30 132.43
4 311.82 95.54

0.4

15

5 272.63 148.66
2 867.31 704.00
3 851.70 450.17
4 822.93 475.563

5 817.29 563.55
2 601.80 346.26
3 496.38 216.69
4 451.13 195.066

5 439.20 256.86
2 473.56 444.62
3 390.78 166.73
4 336.81 131.759

5 320.78 185.25
2 423.20 419.01
3 343.27 148.77
4 283.86 108.9812

5 265.42 150.07
2 406.21 407.61
3 317.34 140.55
4 254.22 98.55

0.6

15

5 234.32 131.48
2 872.62 491.28
3 837.81 514.82
4 811.85 451.703

5 804.65 446.65
2 519.16 194.68
3 480.86 283.85
4 433.84 192.786

5 420.14 180.16
2 413.88 103.11
3 374.51 233.61
4 428.22 137.419

5 296.37 119.40
2 403.31 74.78
3 312.22 214.66
4 380.06 116.9512

5 236.66 95.53
2 383.31 59.68
3 331.68 205.72
4 353.79 107.08

15

0.8

15

5 202.08 83.75
2 2360.79 1927.32
3 2607.31 1489.45
4 2040.51 1075.523

5 1918.20 1213.78
2 1186.58 1311.31
3 1813.20 803.60
4 1522.28 455.386

5 1323.32 463.52
2 944.60 1190.83
3 1622.02 652.77
4 1312.68 231.029

5 1051.20 294.57
2 840.68 1155.30
3 1546.44 599.48
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4 1370.97 181.8512

5 931.71 232.72
2 786.46 1146.11
3 1509.11 576.24
4 1141.34 159.20

0.2

15

5 905.93 203.68
2 2310.87 1476.94
3 2177.9 1461.68
4 1996.30 1500.843

5 1918.20 1335.55
2 1184.61 826.83
3 1617.54 726.74
4 1385.23 798.906

5 1262.84 548.36
2 935.82 681.96
3 1398.07 560.35
4 1160.27 636.389

5 1002.35 355.38
2 826.40 634.22
3 1306.04 476.42
4 1065.37 577.7612

5 887.23 278.23
2 768.21 618.33
3 1258.88 445.43
4 1015.61 551.71

0.4

15

5 751.13 238.87
2 2167.84 1594.71
3 2096.33 1556.62
4 2046.12 1329.003

5 1918.20 1477.64
2 1152.61 994.55
3 1235.50 705.79
4 1162.98 576.996

5 959.10 666.41
2 895.46 845.00
3 1208.32 525.88
4 896.65 392.749

5 811.48 442.09
2 779.30 796.47
3 1099.46 452.67
4 773.88 323.1412

5 671.25 344.38
2 715.81 776.39
3 1040.63 416.14
4 593.86 290.65

0.6

15

5 591.31 291.18
2 2000.41 1538.43
3 2025.62 1725.3
4 1992.32 1568.113

5 1918.2 1128.85
2 1118.59 768.62
3 1136.54 934.90
4 1072.55 823.986

5 998.10 432.12
2 854.11 573.80
3 861.12 714.29
4 852.98 618.249

5 724.4 266.43
2 733.20 494.68
3 732.23 615.89
4 717.80 398.9912

5 575.61 202.54
2 666.13 455.30
3 632.85 561.92
4 640.89 348.62
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20

0.8

15

5 488.83 170.39
2 3964.75 3318.62
3 2897.21 2084.10
4 2968.28 1844.933

5 2846.67 2354.66
2 3211.9 2368.23
3 1527.28 1082.63
4 1635.91 869.826

5 1885.94 1100.75
2 3372.23 2182.14
3 3416.31 831.53
4 1324.9 473.599

5 1582.63 761.25
2 3335.27 2127.21
3 3350.35 611.59
4 1141.86 393.9112

5 1417.66 618.84
2 3326.7 2114.51
3 3192.87 568.67
4 1039.73 356.81

0.2

15

5 1331.28 544.75
2 3744.82 1029.50
3 2917.84 2124.09
4 3062.24 1725.043

5 2846.67 2088.45
2 2877.37 348.45
3 1554.85 929.05
4 1763.09 739.876

5 1772.93 983.05
2 2611.28 259.56
3 1133.72 636.38
4 1232.04 533.439

5 1371.25 696.90
2 2538.79 232.40
3 940.59 487.40
4 1214.33 343.2012

5 1087.39 700.33
2 2850.34 220.96
3 834.26 431.76
4 1120.96 302.62

0.4

15

5 975.97 645.92
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